
Biloba STX
Expert’s Guide

Version 1.0
17-Apr-2004

Contents

1 Introduction 4
1.1 About This Document . 4

2 Setup 5
2.1 Web Server Installation . 5
2.2 Stand-alone Installation . 6
2.3 Using the Command Line Interface 7

3 Development 9
3.1 Writing Extension Modules . 9

3.1.1 What are Figure Modules? 9
3.1.2 Parameters . 9
3.1.3 A simple Figure Module . 10

4 Expert Formatting Commands 13
4.1 Escaping . 13
4.2 Empty Paragraph . 13
4.3 Comments . 14
4.4 Preserving Input . 14

2

List of Figures

2.1 Enable .r Files as CGI Scripts . 6
2.2 Directory Entry That Enables the Execution of CGI Scripts 6
2.3 Shebang line for biloba.r . 6
2.4 change-dir Path For stxify.r . 7
2.5 Command Line Switches for stxify.r 8

3.1 A Sample Figure . 10
3.2 Document That Uses the TRANSFORM Figure 10
3.3 Source Code for the TRANSFORM Figure Module 11

4.1 Escaping: Use Backslash to Prevent Colon From Becoming a De-
limiter . 13

4.2 Two Adjacent Figures . 14

3

Chapter 1

Introduction

1.1 About This Document

This is the Expert’s Guide to the Biloba document formatting system. It ex-
plains the setup process, program internals and how to write extension modules
for the Biloba document formatting system. Formatting commands the average
user does not require most of the time are also covered. For a general introduction
to document formatting using Biloba, please refer to the User’s Guide.

Biloba is a non-interactive document formatting system specifically designed for
documents on the Web. It was developed as a project completed as part of the
requirements for the BSc. (Hons) Computer Studies by Viktor C. Pavlu under the
supervision of Carlton McDonald at the University of Derby in the years 2003-
2004.

4

Chapter 2

Setup

2.1 Web Server Installation

This section assists you with setting up Biloba in combination with the Apache
HTTP Server. It assumes no prior knowledge of the Apache HTTP Server, how-
ever the information on Apache’s ‘httpd.conf’ configuration file presented here
is limited to the minimum required for Biloba. This guide is not intended as re-
placement for the extensive documentation available on the Apache HTTP Server
which is highly recommended before deploying the Web server in a production en-
vironment. The documentation is available at http://httpd.apache.org/docs/.
Note that it is discouraged to use the Biloba prototype in a production environ-
ment, as it can not be guaranteed to be safe. For example, Biloba does not check
that the requested documents are located within the DocumentRoot — all files
readable to Biloba can be accessed through the HTTP server by clever use of the
query string. Making the program source available via the HTTP server is also
considered to be harmful due to security concerns! Later releases will fix this.

First you have to download and install the Apache HTTP Server which is avail-
able at http://httpd.apache.org/download.cgi. You will also require an inter-
preter for the REBOL programming language which is available at http://www.
rebol.com/platforms.shtml. Installation files for a Microsoft Windows environ-
ment can also be found on the accompanying CD in the directory ‘w32setup/’.

Install the HTTP server using the setup program. Then add the following entries
to your ‘httpd.conf’ located in ‘conf/’ inside your Apache installation directory.
Search for the ‘AddHandler’ directive and add the extension ‘.r’ for REBOL files.
This will enable ‘.r’ files as CGI scripts (see Fig. 2.1).

Then add the following lines to your configuration (see Fig. 2.2) to enable the
execution of CGI scripts in the directory ‘biloba/’ within your document root.
The document root is the directory from which the server obtains the documents

5

http://httpd.apache.org/docs/
http://httpd.apache.org/download.cgi
http://www.rebol.com/platforms.shtml
http://www.rebol.com/platforms.shtml

Figure 2.1: Enable .r Files as CGI Scripts
AddHandler cgi-script .cgi .r

Figure 2.2: Directory Entry That Enables the Execution of CGI Scripts
<Directory "YOURDOCROOTHERE/biloba">

Options ExecCGI

AllowOverride None

Order allow,deny

Allow from all

</Directory>

the clients request. By default it is located in the directory ‘htdocs/’ within your
Apache installation, but can be changed to any directory you like. Replace the
text ‘YOURDOCROOTHERE’ with your actual path to your document root which is
specified by the configuration entry ‘DocumentRoot’ followed by the path.

The next step is to setup REBOL. Just copy the file ‘rebol031.exe’ to a directory
on your local disk. Usually this will be ‘C:/rebol/’.

The next step is to copy the Biloba files to their destination. The directory
‘w32setup/biloba/’ on the accompanying CD contains all required files. These
must be copied to the directory you specified as DocumentRoot in the ‘httpd.conf’
file. The location of the ‘biloba.r’ file should be ‘YOURDOCROOTHERE/biloba/biloba.r’.

Edit ‘biloba.r’ so that the very first line contains the location of the REBOL
interpreter. Figure 2.3 illustrates how this line must look like in order to be
interpreted by the Apache HTTP Server.

The setup is now complete — Start the Apache HTTP Server and visit http:

//localhost/biloba/biloba.r?test.stx with your browser!

2.2 Stand-alone Installation

This section explains how to setup Biloba to be used off-line. The only things
you require are an interpreter for the REBOL programming language and the
Biloba program files. Both are located in ‘w32setup/’ on the accompanying CD.

Figure 2.3: Shebang line for biloba.r
#!c:/rebol/rebol031.exe -cs

6

http://localhost/biloba/biloba.r?test.stx
http://localhost/biloba/biloba.r?test.stx

Figure 2.4: change-dir Path For stxify.r
;change this to the directory where

;%stxify.r is located

change-dir %/C/Program%20Files/biloba/

Should you require a REBOL interpreter for a non-Windows platform, you have
to download if from http://www.rebol.com/platforms.shtml.

First, copy the REBOL interpreter to a directory of your choice on your local disk.
Usually this will be ‘C:/rebol/’.

The next step is to copy the Biloba directory (‘w32setup/biloba/’) to a place on
your local disk. Associate ‘.r’ files with the REBOL interpreter by double click-
ing on ‘stxify.r’ and selecting the REBOL binary from the list, if the REBOL
installation has not already done the association for you.

The Biloba prototype requires you to edit the file ‘stxify.r’. At the beginning
of the file you will find a line starting with ‘change-dir’ followed by a path
introduced with the percent sign. Change the path after the percent sign to the
path in which ‘stxify.r’ is located. Note that this path must use forward slashes,
must end with a slash, and must be an absolute path starting at the root. Also
note that blanks need to be encoded as ‘%20’. For a typical installation this line
is shown in Figure 2.4.

Optionally you can assign the extension ‘.stx’ with Biloba’s command line inter-
face ‘stxify.r’. To do this double click on ‘welcome.stx’ and select ‘stxify.r’
to be the default application for ‘.stx’ files.

2.3 Using the Command Line Interface

Biloba can be used from the command line to prepare files offline in various
formats. Figure 2.5 shows the command line switches that can be used with
‘stxify.r’.

If no output format is specified, you will be asked to enter one. Available output
formats are debug, xml, html, and tex.

If no source files are specified, you will be asked to enter one.

A file with the same name as the input file but the extension changed to the name
of the output format. Note that previous existing files with that name will be
overwritten without prior warning!

7

http://www.rebol.com/platforms.shtml

Figure 2.5: Command Line Switches for stxify.r
Usage: stxify.r [options] file...

Options:

-h Display this information

-o <format> Specify output format of following input files

Permissible formats are: debug, xml, html, tex

Examples:

stxify.r -o xml fileA.stx fileB.stx

8

Chapter 3

Development

3.1 Writing Extension Modules

The figure mechanism in Biloba is designed to be easily extensible. New syntax
rules for figures can be added to the system just by adding modules that adhere
to the rules outlined in this section.

3.1.1 What are Figure Modules?

Whenever a line in a document is spontaneously indented, that is indented without
a prior heading, the line and all following lines with the same level of indentation
or more will be extracted from the document and rendered as figure.

The most basic type of figure is a verbatim area. Everything entered will appear
exactly as typed in the source. Physical line breaks as well as blanks are preserved
— no formatting is applied.

This is the default figure type. Every figure without an explicit type parameter
will be treated as verbatim area.

3.1.2 Parameters

If the first lines of a figure are introduced with a hash sign (#), they have a special
meaning.

A line with only a hash sign and some text after it will be treated as the figure’s
title. If the text after the hash sign contains a colon (‘:’), the line is treated as
key/value pair with the key as the left side and the value the right side of the

9

Figure 3.1: A Sample Figure
#This is the title

#type:image

path/to/image.jpg

Figure 3.2: Document That Uses the TRANSFORM Figure
#Text converted to UPPERCASE

#type:transform

#case:uppercase

This TEXT will be

tRaNsFoRmEd to

UPPERCASE characters,

however useful this

may be ...

colon.

One such key, type, has a pre-defined meaning: it specifies the figure module that
is called to process the parameters and the figure text.

All other key/value pairs have no pre-defined meaning but can be assigned one by
developers of a figure module.

Figure 3.1 shows an example of a figure. The figure text will be parsed by the
module ‘image’ located in the directory ‘modules/’. This is the module that
inserts images in your document.

3.1.3 A simple Figure Module

We will now create simple figure module called TRANSFORM. It takes the figure
text and transforms all characters to lowercase. This behaviour can be influenced
with the parameter ‘case’, which allows the values ‘lowercase’, ‘uppercase’, and
‘preserve’. A typical invocation of this figure module can be seen in Figure 3.2.

While this figure module is not particularly useful, it illustrates all the concepts
required for creating a figure module.

In order to add a figure module, you have to create a file with the name of the
module. In our case, we create a file called transform with no extension and put
it into the directory ‘modules/’ where all figure modules must be located.

Figure modules are incepted as functions in the REBOL programming language.
The function has to accept two arguments

10

Figure 3.3: Source Code for the TRANSFORM Figure Module
func [headers lines /local transformed-string][

;create a string that contains the first line

transformed-string: copy lines/1

;so we can easily append the other lines after

;inserting a newline character

lines: next lines ;skip first, already added, line

forall lines [

insert tail transformed-string newline ;insert newline

insert tail transformed-string lines/1 ;insert the line

]

either find headers "case:uppercase" [

;transform to uppercase

uppercase transformed-string

][

if not find headers "case:preserve" [

;transform to lowercase

lowercase transformed-string

]

]

;return a valid document node [’node-type ["node’s content"]]

reduce [’verbatim reduce [transformed-string]]

]

• a block containing all headers, and

• a block containing the lines

Figure 3.3 shows the source code of the TRANSFORM figure module. The
first line starts the function definition with the first block containing the pa-
rameters ‘headers’ and ‘lines’. These are the words through which the two
blocks will be passed. The ‘/local’ string is called a refinement. It specifies that
‘transformed-string’ is a local variable.

‘either find headers "case:uppercase"’ tests if ‘"case:uppercase"’ was passed
as header. If so, the function transforms the text to uppercase characters using
the REBOL function ‘uppercase’.

Finally the function has to return a valid document node which consists of a
document node identifier and a block of further nodes and strings that make up
the node’s content. These values are enclosed in a REBOL block.

11

To create more sophisticated modules, you need to have a background in the
REBOL programming language. The REBOL Reference Manual is available online
at http://www.rebol.com/users/valurl.html.

Adding an Output Writer

12

http://www.rebol.com/users/valurl.html

Chapter 4

Expert Formatting Commands

4.1 Escaping

Sometimes you want to prevent Biloba from interpreting characters and have them
preserved just as they are. A frequent example is the use of a colon (:) inside a
figure caption. Naively writing the colon inside the caption will turn the caption
into a key/value pair.

Fortunately there is a mechanism to prevent this. By adding a backslash in front
of any character, the character will appear exactly the same way in the output.
This can be used to prevent the colon from becoming a key/value pair delimiter.
Figure 4.1 shows an example.

Note that this can be applied to any character you feel necessary.

4.2 Empty Paragraph

The empty paragraph, a single period as the only character in a line, can be used
to directly influence the current level of indentation without the need for text.

This is especially useful if you want to have a figure immediately following another
figure. Without the empty paragraph the second figure would not be detected as
a second figure but the will be joined to a single, larger figure. Without the empty

Figure 4.1: Escaping: Use Backslash to Prevent Colon From Becoming a Delimiter
#Escaping: Use Backslash to Prevent Colon From Becoming a Delimiter

...

13

Figure 4.2: Two Adjacent Figures
#Image 1

#type:image

image1.jpg

.

#Image 2

#type:image

image2.jpg

paragraph you would have to add some text between the figures for clarity, which
is sometimes not an option.

An example (see Fig. 4.2) will clarify this.

4.3 Comments

Comments are used to prevent Biloba from parsing a single line or a group of lines.

Lines starting with a hash sign (‘#’)in the very first column will be ignored.

To ignore a block of lines, enclose the lines between ‘#=ignore’ and ‘#=end’, both
of which must appear on a line of its own and the hash sign needs to be in the
very first column.

4.4 Preserving Input

Text between ‘#=preserve’ and ‘#=end’ will be transferred 1:1 to the output
document.

Note that this feature limits the output format independence. Text inside a pre-
serve block can violate rules in the output format. Biloba can no longer ensure
that the created markup conforms the the rules of the output format.

Use this only if you know the document will not be transformed into other formats
than the one you wrote the preserve blocks for.

14

	Introduction
	About This Document

	Setup
	Web Server Installation
	Stand-alone Installation
	Using the Command Line Interface

	Development
	Writing Extension Modules
	What are Figure Modules?
	Parameters
	A simple Figure Module

	Expert Formatting Commands
	Escaping
	Empty Paragraph
	Comments
	Preserving Input

