
Biloba STX
Parser Rules

Version 1.0
7-Apr-2004

Contents

1 Introduction 3
1.1 About this Document . 3
1.2 Goal of Rules . 3

2 Structured Text Parser Rules 4
2.1 Structural Rules . 4

2.1.1 Paragraphs . 4
2.1.2 Captions . 4
2.1.3 Figures . 5
2.1.4 Term and Definition . 5
2.1.5 Quotes . 6
2.1.6 Lists . 6
2.1.7 Horizontal Delimiters . 7

2.2 Inline Rules . 8
2.2.1 Linking to other Documents 8

2.3 Processing Instructions . 8
2.3.1 Comments . 8
2.3.2 Pass-through . 9
2.3.3 Pseudo-Paragraph . 9
2.3.4 Escaping . 9

2.4 Rules Not Implemented in the Prototype 9
2.4.1 Footnotes . 9
2.4.2 Abbreviations . 10
2.4.3 Special Symbols . 10
2.4.4 Tables . 10
2.4.5 Referencing . 10

2

Chapter 1

Introduction

1.1 About this Document

This is a summary of formatting rules for Structured Text that were defined as
part of the Final Year Project entitled Document Formatting Systems completed
as part of the requirements for the BSc. (Hons) Computer Studies by Viktor C.
Pavlu in the years 2003-2004. This document is also available on the CD that
accompanies the project report.

Biloba implements most of these rules. Future extensions to Biloba should be
implemented according to this document to retain a consistent source format and
consistent formatting across different versions of the parser and other Structured
Text parsers.

The syntax is made to be as intuitive as possible, however intuitive does not mean
lax. There is a small set of strict rules that need to be obeyed when creating
a structured document. This document describes these rules from a developer’s
point of view. For a user’s point of view, please consult the User’s Guide and
Expert’s Guide.

1.2 Goal of Rules

The rules must be intuitive, consistent, easy to remember and unambiguous while
at the same time explicit markup should be avoided where possible. Users must
be able to create a simple document right away without reading a manual.

3

Chapter 2

Structured Text Parser Rules

2.1 Structural Rules

The basic unit of text in Biloba is the line. A line is a sequence of characters
terminated with CRLF (carriage return, line feed; hexadecimal: ‘0D 0A’), CR or
LF (depending on operating system used) or terminated by EOF.

A line that consists of only whitespace and the delimiter is an empty or blank line.

Non-empty lines have a certain level of indentation, that is the number of blanks
between the start of the line and the first non-whitespace character. Tab characters
account for two blanks (this can be configured with the ‘tab-size’ variable in
%main.r).

An empty line or a change in indentation delimit blocks of text. The various block
elements are described below.

2.1.1 Paragraphs

Multiple non-empty lines that share the same indentation level are joined to form
one paragraph.

An empty line separates paragraphs.

2.1.2 Captions

A caption is a single line followed by one or more lines that are more indented.

4

Then the lower level and all following text elements on the same level form the
body of the section in the document and the caption line serves as section heading.

Two lines followed by text on a lower level are not captions, rather the text is
”spontaneously indented”.

2.1.3 Figures

Text that is spontaneously indented, a line of text that starts with two blanks
without a caption immediately before, is regarded as a figure.

Figure text is usually retained the way it was typed in and will be rendered using
a non-proportional font so that the ‘i’ and the ‘X’ character have the same width.
Whitespace is also preserved. These properties make figure test ideal for code
samples or other examples within a technical document.

The layout of a figure depends on the type of the figure. By default no further
processing is performed but by adding a figure header of the form ‘#mode:image’,
the figure text is interpreted by the image figure module. The image module
interprets the figure text as reference to an image and inserts the image as figure.

A programmer can add figure modules to the system by writing a REBOL function
with two parameters, headers and lines. The function processes the figure text
contained in lines and the optional figure headers contained in headers to create
a document node that represents the figure in the document tree. This function
must be saved in the directory %modules/ under a filename which will be the
name of the module. For details see the image module in ‘modules/image’.

By adding a figure header of the form ‘#An Example’, the figure will be given the
caption ”An Example”. All figures are numbered automatically as well.

In addition to the ‘#mode:’ header any header of the general form ‘#key:value’
can be added to the top of a figure. These key/value pairs are the way passing
parameters to the figure modules (via headers).

2.1.4 Term and Definition

Inside a line1, two dashes ‘--’ are used to separate a term and its definition.

If the user wanted a hyphen instead of the terminus/definition pair, three dashes
are required.

1In the current version of Biloba term/definition pairs are not allowed to span multiple lines.

5

2.1.5 Quotes

A paragraph enclosed in double quotation marks followed by two dashes and a
name is rendered as a quote. The quoted text is the actual quote and the text
after the dashes refers to the person that is quoted.

2.1.6 Lists

There are two kinds of lists in Biloba:

• itemized lists (unordered, ”bulleted”)

• enumerated lists (ordered, ”numbered”)

Lists are a group of paragraphs introduced with either a bullet or a number indi-
cating the type of list. Every element in a list may span multiple lines and lists
can be nested. An empty line delimits a list.

In list items spanning multiple lines, the subsequent lines must be aligned with
the text rather than the bullet token.

As users sometimes intuitively indent lists to separate them from the rest of the
text without the intention to create a new sub block, this manner is accounted for
in Biloba and spontaneously indented lists are treated as if they were not indented.

The result is improved usability in most of the cases where lists are used, however
it also introduces ambiguity if a list is the first element after a caption:

Multiple lines of text followed by an indented list are parsed as a paragraph fol-
lowed by a list on the same level.

A single line of text followed by an indented list is parsed as a line followed by a
list on the same level. This is what one would expect. However this clashes with
the definition of a caption ”...a single line followed by one or more lines that are
more indented”.

Therefore lists are not allowed to be the very first element after a caption if the
caption is followed by an empty line unless the list is spontaneously indented in
respect to the level of the sub block introduced by the caption (or double indented
in other words).

If there is no blank line between the list and the caption, normal indentation is
enough to discern the list in a sub block from a list indented for better readability
only. The underlying assumption is that if accentuating the list was the only
motivation for indentation, the user also would have added a blank line to bring

6

the list out more clearly — otherwise the list was indented on purpose yielding a
caption and a list in a sub block.

Itemized Lists

Itemized lists are used to group text elements into a concise presentation where
the elements do not appear in specific order.

The following tokens can be used to indicate an element of an itemized
list:

• ‘o text’

• ‘- text’

• ‘* text’

• ‘*) text’

Ordered Lists

Ordered lists are similar to itemized lists but their elements’ order plays a role to
the meaning of the text. Therefore the elements are usually numbered.

The following tokens can be used to indicate an element of an ordered
list:

• ‘1. text’

• ‘1, text’

• ‘1) text’

Instead of ‘1’ any number can be used, however the actual numbering is done
automatically by Biloba to allow easy re-ordering of elements.

2.1.7 Horizontal Delimiters

A line that consists of (at least 3) dashes only is regarded as a horizontal delimiter.
Either a horizontal rule will be inserted or the text flow continues on the next page
or there is a reasonable pause before the rest of the text is to be read out, depending
entirely on the output media.

7

2.2 Inline Rules

All elements discussed so far were ”structural” elements. They started a new block
or represented a part of an existing block.

Inline formatting is done within the structural elements. Simple symbols inside the
text are used to indicate the desired type of the text enclosed by the symbols. As
the format of Biloba is declarative throughout, the actual rendered output depends
on the output writer, however these symbols are commonly used in newsgroups to
apply a certain type of emphasis to words:

strong text enclosed in asterisks will be typeset to bring it out stronger than
other text

keyboard text enclosed in a pair of two single quotes is displayed as if typed in
by the user

emphasized text enclosed in slashes will be emphasized

deleted text enclosed in tilde characters is used to denote something has been
deleted

underlined text enclosed in underscore characters will be rendered underlined

2.2.1 Linking to other Documents

Hyperlinks to other documents are written as ‘[label>>target]’ where label is
the text that will be displayed and target is the resource that can be reached when
following this link.

2.3 Processing Instructions

This section describes processing instructions to the parser. This is the only form
of explicit markup in Biloba and will not be required for most uses.

2.3.1 Comments

Lines with a hash sign ‘#’ as their very first character will be ignored by the parser.
This can be used to add instructions targeted to your editor for example.

Text between the lines ‘#ignore’ and ‘#end’ is ignored entirely.

8

2.3.2 Pass-through

Text between the lines ‘#preserve’ and ‘#end’ is verbatim copied to the output
writer encapsulated in a preserve node. No further processing is applied to these
sections.

Pass-through sections can be used to directly manipulate the physical output of
a document. For example it is perfectly valid to add TEX commands to typeset
mathematical formulae in such a section. However if the document is then to be
rendered in a format other than TEX, the TEX commands will not be interpreted
but rather appear in the output as they were typed. Therefore note must be taken
that this sacrifices the content/representation independence to a certain amount,
nevertheless it is sometimes a powerful feature.

2.3.3 Pseudo-Paragraph

A line that consists of a single period ‘.’ only will produce no output. It is solely
there to circumvent ambiguities in indentation, for example after a list.

2.3.4 Escaping

The characters and their influences on the parser were outline in this document.
Sometimes, however it is desired to have a hash sign ‘#’ as the first character in a
line without having the line ignored by the parser, or to have square brackets ‘[]’
in a paragraph and not having them replaced with a hyperlink.

Adding a backslash character ‘\’ in front of any character preserves the character
as it is. The escaped character is not interpreted as formatting symbol of any
kind. The backslash character itself can be added to a document by writing ‘\\’.

2.4 Rules Not Implemented in the Prototype

All rules this far were implemented and tested in the prototype of Biloba. The
following rules act as a starting point for further work.

2.4.1 Footnotes

Adding footnotes to inline tokens while typing is done by appending ‘^(footnote-text)’
to the word where the footnote should be added. The text between the parenthe-

9

ses will be displayed where the output writer deems it appropriate, usually on the
bottom of the current page.

2.4.2 Abbreviations

The first time an abbreviation appears in the text it should be written out in
parentheses. If the parser finds an abbreviation followed by text enclosed in double
parentheses, the abbreviation and the spelled-out form from within the parentheses
will be added to an internal synonym database.

Every time the abbreviation is used, the spelled-out form can be added by the
output writer automatically, if desired.

The synonym database is intended to be created on the fly for each document
alone, but it is also possible to have one central synonym database multiple authors
are sharing.

2.4.3 Special Symbols

Special characters normally not available on a standard keyboard could be added
via escape sequences. Mathematical operators, greek letters and Umlaute, . . . are
examples of this type of text.

2.4.4 Tables

Tables are not part of the Biloba rules but should be implemented by means of
figure modules instead.

2.4.5 Referencing

Adding references to inline tokens while typing is done by appending ‘^[ref-id]’
to the word where the reference should be added. Ref-id is an unique identifier
of the source being referenced which Biloba looks up in a BibTEX database. Ref-
erenced entries will automatically be added to the bibliography at the end of the
document.

10

	Introduction
	About this Document
	Goal of Rules

	Structured Text Parser Rules
	Structural Rules
	Paragraphs
	Captions
	Figures
	Term and Definition
	Quotes
	Lists
	Horizontal Delimiters

	Inline Rules
	Linking to other Documents

	Processing Instructions
	Comments
	Pass-through
	Pseudo-Paragraph
	Escaping

	Rules Not Implemented in the Prototype
	Footnotes
	Abbreviations
	Special Symbols
	Tables
	Referencing

