
UNIVERSITY OF DERBY
Derbyshire Business School

A project completed as part of the
requirements for the

BSc (Hons) Computer Studies

entitled

Document Formatting Systems

by

Viktor C. Pavlu
in the years 2003 – 2004

ABSTRACT

DOCUMENT FORMATTING SYSTEMS

April 24, 2004

VIKTOR C. PAVLU

Document formatting is the process of mapping information to layout. Since the

first document formatting systems were developed in the 1960s, the use of com-

puterized document formatting systems has steadily increased. Today document

formatting is one of the most widespread applications of computers.

This report gives an overview of the historical development of document for-

matting systems and approaches introduced by document formatting systems. It

studies and reviews employed methods and their contribution to the future of

document formatting.

Biloba, a prototypical document formatting system that addresses special re-

quirements in context of the Web, is developed to support the theoretical work.

The possible value of a document formatting system tailored to problems inherent

to the Web is formulated, the prototype is presented and analysed.

The work concludes with some ideas for the advancement of the system and

future prospects related to the field of document formatting in general.

ii

ACKNOWLEDGEMENTS

Above all, I would like to thank Carlton McDonald for supervising this project

and providing many helpful advices during the course of the project.

I want to express my gratitude to my parents who made it possible for me to

study abroad.

Further I want to thank Robert Sedgewick of Princeton University for providing

valuable information by answering my inquiries about his work.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Aims and Objectives . 2
1.3 Report Overview . 3
1.4 What is a Document? . 3
1.5 What is Document Formatting? . 4

2. HISTORICAL DEVELOPMENTS IN DOCUMENT
FORMATTING .6

2.1 Automation of Writing . 6
2.2 *roff Family of Typesetters . 7

2.2.1 RUNOFF . 7
2.2.2 UNIX derivatives . 8
2.2.3 Generic Coding with Troff . 9

2.3 Generalized Markup . 9

2.3.1 Generalized Markup Language . 10
2.3.2 Standard Generalized Markup Language 10
2.3.3 Extensible Markup Language . 12
2.3.4 Document Style Semantics and Specification Language

(DSSSL) . 12

iv

2.4 The Bravo Interactive Editor . 12
2.5 The Scribe System . 12
2.6 The TEX family . 13

2.6.1 TEX . 13
2.6.2 LATEX . 14

2.7 Adobe Page Description Languages . 14

2.7.1 PostScript . 14
2.7.2 Portable Document Format . 15

2.8 The Lout System . 15
2.9 Classification of DF Systems . 16

3. A DOCUMENT FORMATTING SYSTEM FOR THE
WEB . 18

3.1 Problems with documents on the Web . 18
3.2 Consistency . 19
3.3 Multiple Output Formats . 20
3.4 Conforming to Standards . 21
3.5 Frequent Updates . 22
3.6 Web Artifacts . 22
3.7 Suitability of Existing Systems . 22
3.8 Summarized Requirements . 23

4. THE BILOBA DF SYSTEM .25

4.1 Overview . 25
4.2 Parser . 25
4.3 Output Writer . 28
4.4 Figure Modules . 31
4.5 Cache . 31
4.6 The Structured Text Format . 32

5. DISCUSSION .34

5.1 Review in Context of Related Work . 34

5.1.1 NOTECH . 34
5.1.2 Zope STX . 36

5.2 Evaluation . 37

5.2.1 Strengths of Biloba . 38
5.2.2 Weaknesses of Biloba . 39

v

6. CONCLUSION .41

6.1 Extending Biloba . 42
6.2 Broader Perspective . 43

BIBLIOGRAPHY .45

APPENDICES

A. STRUCTURED ANALYSIS DIAGRAMS .50
B. COMMENTED SOURCE CODE .53

B.1 Parser Core Files . 53
B.2 Output Writer . 53
B.3 Figure Modules . 54
B.4 Style Sheets . 54
B.5 Test Harness . 54

C. BILOBA STX – USER’S GUIDE .55
D. BILOBA STX – EXPERT’S GUIDE .75
E. BILOBA STX – PARSER RULES .90
F. PROJECT SUPPORTING TASKS . 101

F.1 Regression Tests . 101
F.2 Estimation And Time Management . 101

G. PROJECT OVERVIEW PLANS . 105
H. PROJECT PROPOSAL . 108
I. PROGRESS REPORTS . 110
J. INTERIM REPORT . 119

vi

LIST OF FIGURES

Figure Page

2.1 GML Source with use of Minimization . 10

2.2 SGML Source with use of Minimization . 11

4.1 Biloba Architecture . 26

4.2 Node Definition in BNF . 27

4.3 Sample Quote in Structured Text Source Form 27

4.4 Tree Representation of the Sample Source . 28

4.5 Sample Quote in XML format . 29

4.6 Sample Quote in XHTML 1.0 Strict Conformant Format 30

4.7 Sample Quote in XHTML 1.0 Strict Conformant Format,
Rendered by Browser . 30

5.1 Short Excerpt of “NOTECH: Typesetting Without Formatting”
(Lipton & Sedgewick 1990), Source Form . 35

5.2 Short Excerpt of “NOTECH: Typesetting Without Formatting”
(Lipton & Sedgewick 1990), Rendered Form 35

A.1 Context Diagram . 51

A.2 Diagram 0: Biloba . 51

A.3 Detail Diagram 2: Parse Document . 52

F.1 Test Tool Sample Screen with Failed Tests . 102

F.2 Test Tool Sample Screen with all Tests Passed 103

vii

F.3 Sample Data as recorded by the Logging Tool 104

I.1 Progress Report: October 10, 2003 . 112

I.2 Progress Report: October 22, 2003 . 113

I.3 Progress Report: November 13, 2003 . 114

I.4 Progress Report: December 3, 2003 . 115

I.5 Progress Report: February 4, 2004 . 116

I.6 Progress Report: February 24, 2004 . 117

I.7 Progress Report: March 10, 2004 . 118

viii

LIST OF TABLES

Table Page

2.1 Classification of DF Systems . 17

ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

Documents can transport ideas into another person’s mind even more than spoken

language can do, as written text bridges gaps of time and acquaintanceship.

Authors want to compose thoughts into documents instead of programming for-

matting commands to typeset their compositions. Unfortunately existing systems

run counter to these preferences and force authors into typesetting.

One possible solution is to use interactive what-you-see-is-what-you-get (WYSI-

WYG) editors that hide the details of typesetting from their users. Evidently

these systems add their own issues: documents are machine- and application de-

pendent, often lack an inherent semantic structure, and interactively applying

visual attributes leads to inconsistencies affecting the overall quality of the out-

put.

This draws authors who seek high quality material to use systems such as troff

and TEX. The markup that is required for these systems is seen as necessary evil

to create publication quality material (Lipton & Sedgewick 1990).

Writing for the Web adds additional constraints to documents that current systems

fail to address.

1

This project attempts a to find a compromise between high quality documents

suitable for the Web and an easy to use interface allowing authors to concentrate

on the writing.

The implementation of this compromise in the Biloba DF system is explained.

1.2 Aims and Objectives

The original aims and objectives as stated in the project proposal (see Appendix

H) kept unchanged as the project progressed.

The purpose of the project Document Formatting Systems is to get knowledge of

existing document formatting (DF) systems, their history and the techniques they

use, in order to be able to implement a prototypical DF system for the Web that

combines advantages of existing systems.

The author tries to find an answer to the question what a DF system has to fulfill

to be, in particular, suitable for the Web.

The DF system prototype is intended to be used online in a collaborative environ-

ment, however it is not concerned with concurrency, network transport, security

aspects or version control. Neither does it deal with the actual typesetting — this

is left to the browser or other systems which create the final representation.

The objectives for this project thus are:

• to present and discuss the sequence of developments in the field of DF,

• to formulate the possible value of a DF system for the Web,

• to review and evaluate related work, and

2

• to implement, review and discuss the DF prototype.

This project was completed as part of the requirements for the BSc. (Hons) Com-

puter Studies by Viktor C. Pavlu under the supervision of Carlton McDonald at

the University of Derby in the years 2003-2004.

1.3 Report Overview

The report is organized as follows:

After establishing a common vocabulary, the sequence of developments in the field

of document formatting is summarized reviewing influential systems.

A Document Formatting System for the Web (Chapter 3) outlines the problems a

DF system has to address to be used in a collaborative environment where docu-

ments need to conform to a number of standards and rules inherent to documents

on the Web. The result of this analysis leads to the requirements for a DF system

for the Web.

The design and implementation of Biloba is explained in detail before the system

is critically reviewed and compared to related work in the discussion.

After providing a list of unanswered questions as starting point for further research

and improvements to the system, this final year project’s conclusions are drawn.

1.4 What is a Document?

There are a number of different definitions of document in the academic world

(Briet (1951), Spring (1991), Buckland (1997), . . .) as well as in everyday use.

3

“Ask any group of ten information scientists to define ‘document’ and

you will get ten different answers.” – Spring (1991)

According to the formal definition of a document given by the League of Nations’

International Institute for Intellectual Cooperation (IIIC), a document is “Any

source of information, in material form, capable of being used for reference or

study or as an authority. Examples: manuscripts, printed matter, illustrations,

diagrams, museum specimens, etc.” (Buckland 1997)

This project further restricts the definition of document to those available electron-

ically and in textual form. These documents may have other types of documents

(images, tables, interactive programs, . . .) embedded within them but the em-

bedded objects are not treated as documents but atomic data.

1.5 What is Document Formatting?

Document formatting is the process of mapping information to layout. Before

the use of computerized systems, this task was completed by the typesetter who

relied on notes added by the editor to the margin of a manuscript. This is also

the reason why programs used for this task are also referred to as typesetters.

There are two approaches towards formatting a document: the first, and as it

seems, the more popular one today, is to use a graphical what-you-see-is-what-

you-get (WYSIWYG) editor to apply physical formatting to a document. The

second approach is to manually insert formatting commands into a plain text

document and have a batch formatter produce the output.

While the latter method seems obsolete, it does have advantages over current

WYSIWYG applications. Batch formatting systems usually use logical markup

4

instead of physical formatting and therefore give the documents an inherent struc-

ture. Changing the appearance of all headings in a document with logical struc-

ture is easily done on one central location, whereas in a document with physical

formatting, it is tedious and error-prone, and often results in inconsistent layout.

5

CHAPTER 2

HISTORICAL DEVELOPMENTS IN DOCUMENT
FORMATTING

This chapter summarizes influential developments in the field of document format-

ting. It is intended as a concise overview of important work. Suggestions for fur-

ther reading are given to provide extensive review of a broader set of DF systems:

Surveys of editing systems (Furuta, Scofield & Shaw 1982), (Meyrowitz & van

Dam 1982a) & (Meyrowitz & van Dam 1982b), and (van Dam & Rice 1971), his-

torical reviews (Furuta 1992), (André, Brüggemann-Klein, Furuta & Quint 1994),

and (Myers 1998), and an annotated bibliography (Reid & Hanson 1981).

2.1 Automation of Writing

Word Processing was the result of gradual automation of the physical aspects of

writing.

The initial steps towards automation were the invention of printing and Guten-

berg’s movable type at the end of the Middle Ages. Ottmar Mergenthaler further

simplified the process of printing with Linotype, a machine for producing printing

bars, in 1886. (Linotype History: 1886 – 1899 n.d.)

The first major advance from manual writing as far as the individual was concerned

was the typewriter, first built by Henry Mill in 1714. In 1961 IBM brought out

6

the Selectric typewriter. Instead of movable carriages and type bars it used a

revolving typeball (often referred to as the ”golfball”). This could print faster than

the traditional typewriter and changing fonts could easily be done by replacing

the typeball. (IBM Archives: 1961 1961)

Three years later, IBM introduced the Magnetic Tape Selectric Typewriter (MTST)

which was the first typewriter equipped with a magnetic recording device making

it possible to revise drafted work prior to actual printing. This gave rise to the

concept known today as Word Processing.

Once documents could be edited on a computer system, the need for automated

layout systems, or document formatting systems, arose.

2.2 *roff Family of Typesetters

2.2.1 RUNOFF

One of the first DF systems was RUNOFF, written by Jerome H. Saltzer for the

Compatible Time-Sharing System (CTSS) in 1963 and 1964 to typeset his PhD

thesis. (van Vleck 1995, Saltzer 1965)

It used formatting instructions that consisted of lines starting with a period. This

syntax was chosen because it was common practice to denote formatting requests

to the person who would perform the typesetting in the same way. (Fisher 1994)

Bob Morris ported RUNOFF to the General Electrics 635 platform and renamed

it to roff. Doug McIlroy rewrote, simplified, and extended the system in 1969.

7

2.2.2 UNIX derivatives

With the growing popularity of the UNIX operating system, which could also run

on more affordable machines, a DF system for the new environment was required,

too. Joseph F. Ossanna wrote new roff (or nroff) for the UNIX operating system.

Instead of trying to provide every single style a user might need, Ossanna made

nroff programmable, so that new formatting tasks could be solved by programming

in the nroff programming language. (Kernighan, Lesk & Ossanna 1978)

Later Ossanna wrote troff (typesetter roff) to drive a Wang Graphic Systems CAT

typesetter at the Bell Laboratories. nroff and troff are basically the same programs;

nroff is used for on-screen display ignoring font changes and other commands not

suitable for screen display while troff was used to prepare the same document for

printing. (Fisher 1994, Darwin 1984, Ossanna 1976)

By creating nroff as a programming language, Joseph Ossanna made it very flexible

and extensible. Many preprocessors and extensions, so called macro packages,

have been developed to address specific formatting needs. Popular preprocessors

include tbl for tables, eqn for equations, chem for chemical structure diagrams,

grap for graphs, and pic for graphics to name a few.

In 1979, Brian W. Kernighan modified troff to be device independent. (Kernighan

1981) James J. Clark completely rewrote the troff system as a GNU project where

it is available for free under the name groff. (Fisher 1994)

Despite its age, troff is still widely used and continues to be the standard format

for UNIX documentation.

8

2.2.3 Generic Coding with Troff

Using macros it was possible to start a new .chapter and have the numbering

updated automatically along with formatting the chapter heading.

The -ms macros that accompanied troff were the first simple form of generic coding

in documents. There were paragraphs that open a new section (.LP), normal

paragraphs (.PP), and paragraphs used to format quotes (.IP). The first one

would have a larger margin in the first line of text as commonly found after a new

section. The last paragraph type indented output to set off the quote from the

rest of the text. (Lesk 1978)

2.3 Generalized Markup

According to Goldfarb (1990), a presentation entitled “The separation of infor-

mation content of documents from their format” by William Tunnicliffe, chair-

man of the Graphic Communications Association (GCA) Composition Committee,

started the generic coding movement in September 1967 (Goldfarb 1990).

Generic coding uses descriptive tags like “heading” instead of control codes or

macros that caused the document to be formatted in a particular way.

At that time, New York book designer Stanley Rice proposed the idea of universal

catalog of parameterized ‘editorial structure’ tags. These trends were recognised

by Norman Scharpf, director of the GCA, who established a generic coding project

called ‘GenCode Concept’ which was later to become the GenCode committee.

Unfortunately this project never came to a solution as the members could not

agree on the common markup (Goldfarb 1990).

9

:document.

:line....:eline.

:quote.

:speech.Man is not the sum of what he has

already, but rather the sum of what he

does not yet have, of what he could have.

:source.Jean-Paul Sartre

:equote.

:line....:eline.

Figure 2.1. GML Source with use of Minimization

2.3.1 Generalized Markup Language

The Goldfarb, Mosher, Lorie research team at IBM invented the Generalized

Markup Language (GML) based on the ideas of Tunnicliffe and Rice in 1969.

The hierarchical markup used by GML was formally defined in document type

definitions (DTD) which explicitly specified which elements were allowed to con-

tain what other elements. (Goldfarb 1990)

Users could define their own markup tags enclosed in ‘:’ and ‘.’ character pairs.

Figure 2.1 shows a sample GML document. Markup minimization permitted that

certain end tags (as ‘:speech.’ and ‘:source.’ in Fig. 2.1) could be omitted if

the context allows this without ambiguity. Parsers interpreting the DTD ensured

documents contain valid structures only.

2.3.2 Standard Generalized Markup Language

In 1978, Goldfarb led a project for the American National Standards Institute

(ANSI) to produce a standard text description language based on GML which

became the Standard Generalized Markup Language (SGML) and was later trans-

ferred to the International Organization for Standardization (ISO) to become the

international standard ‘SGML ISO 8879/1986’ in 1986 (Hopgood 2002).

10

<document>

<line>...</line>

<quote>

<speech>Man is not the sum of what he has

already, but rather the sum of what he

does not yet have, of what he could have.

<source>Jean-Paul Sartre

</quote>

<line>...</line>

Figure 2.2. SGML Source with use of Minimization

While most of the time counted to the group of declarative markup languages,

SGML is really a standard to define markup languages. SGML applications,

markup languages defined with the SGML, can be either of declarative or pro-

cedural nature. The most widely known application of SGML, the Hypertext

Markup Language (HTML), has elements of both types: <U> for underlined text

is procedural while <H1> for a level one header is declarative.

Figure 2.2 shows a sample SGML document. Although the standard allowed any

character pairs to be used to enclose the tags as long as they are declared in the

SGML declaration, it was common practice to use angle brackets to enclose the

tags. A forward slash was used to denote closing tags.

SGML was and continues to be widely used for electronic documents by a large

number of users, including Her Majesty’s Stationery Office (legal text), the Com-

mission of the European Communities (FORMEX), the US Department of Defense

(ATOS), Oxford University Press (OED) (Barron 1989), and by the European Or-

ganization for Nuclear Research (CERN) where it became ancestral to the World

Wide Web’s Hypertext Markup Language HTML.

11

2.3.3 Extensible Markup Language

In 1996 a first working draft of the Extensible Markup Language (XML) was

published. XML is an extremely simplified dialect of SGML targeted to make

interoperability with parsers and other tools easier.

2.3.4 Document Style Semantics and Specification Language (DSSSL)

The international standard DSSSL, defined in ISO/IEC 10179/1996, describes a

document processing language that can be used to transform, query, and style

SGML documents (Technical Committee JTC 1/SC 34 1996).

2.4 The Bravo Interactive Editor

Designed in the 1970s by Butler Lampson and Charles Simonyi, the Bravo editor

was the first system that had an approximation of the document in its final form

displayed on a high-resolution screen for interactive editing. Bravo coined the

term what-you-see-is-what-you-get (WYSIWYG) and continues to have a major

influence on today’s most widely used word processing product, Microsoft Word,

which was also developed by the team around Simonyi. (Lampson 1976)

2.5 The Scribe System

Brian K. Reid picked upon the ideas of the Generalized Markup Language (GML)

and generic coding in general to develop Scribe in the late 1970s at Carnegie-

Mellon University.

The emphasis was on a simple input language that lets the user express the ab-

stract objects within a document, leaving the responsibility for the appearance to

12

an expert “who establishes definitions mapping the logical structure to the printed

page”. (Furuta et al. 1982)

Although very simple forms of generic coding have already been implemented in

nroff/troff, Scribe was the first DF system to use declarative markup throughout.

With Scribe, authors described the logical structure of a document rather than a

physical representation. (Reid 1980a)

There even were mechanisms for automatic creation of numbering of captions

and list items, cross-references, a table of contents, and a bibliography. When

Scribe finds a citation, it looks up the unique identifier in a bibliography database

and adds the actual text of the citation into the document as well as creating a

bibliography that is inserted at the end of the document. (Furuta et al. 1982, Reid

& Walker 1980, Reid 1980b)

2.6 The TEX family

2.6.1 TEX

When revising the second volume of The Art of Computer Programming in the

late seventies, Donald E. Knuth was disappointed with the typographic output

he received. This motivated him to create a system for individuals to create

documents with publication quality.

The original version, TEX78, was modified based on his and other users’ experi-

ences. He described TEX82 — the same version still in use today — in Knuth

(1984) which continues to be the standard work on TEX.

METAFONT is the other part of Knuth’s typesetting system. It is used to create

fonts for TEX.

13

Similar to troff, TEX is a programming language rather than a fixed set of com-

mands making it very flexible. However there is a set of basic commands (300

primitives and 600 control sequences), referred to as Plain TEX, predefined at

startup to control the system and to create new commands.

The TEX User Group puts it concisely:

. . . TEX is a special-purpose programming language that is the center-

piece of a typesetting system that produces publication quality mathe-

matics (and surrounding text), available to and usable by individuals.

(TEX Users Group 2000)

2.6.2 LATEX

On top of the TEX language, Leslie Lamport implemented LATEX which uses a

generic coding approach rather than physical formatting. The first publicly avail-

able version was LATEX 2.09 in 1985. In 1994 LATEX 2ε was released in response to

many nonstandard enhancements to the original version. (Goossens n.d.)

“LATEX is now extremely popular in the scientific and academic communities, and

it is used extensively in industry” (Lamport 1986).

2.7 Adobe Page Description Languages

2.7.1 PostScript

Since its inception in 1978, the PostScript page description language has enabled

unprecedented control over the look and feel of printed documents in a device

independent manner.

14

“The capabilities PostScript makes possible, have established it as the

industry page description language standard” – Adobe Systems (1999)

2.7.2 Portable Document Format

The today very popular Portable Document Format (PDF) page description lan-

guage uses the same Adobe Imaging Model as PostScript does, making conversions

between the two easy. The main difference between the two languages is that PDF

is made of static data structures suitable for random access while PostScript “is

a simple interpretive programming language with powerful graphics capabilities”

(Adobe Systems 1999).

2.8 The Lout System

The Lout DF system, first released in 1991 is a relatively new approach and draws

upon to be the future of DF. Instead of making a DF system extensible by adding

programming language capabilities, the author of Lout chose to design a functional

high-level programming language for typesetting first and then to implement a DF

system in that clean language. Here, ‘clean’ describes a language that has a regular

structure with trivial syntax that is well suited to the problem domain and has

no illogical restrictions or ‘special case’ confusions. “Examples of illogical context

restrictions are extremely common in document formatting systems. FrameMaker

permits objects to be rotated in certain contexts (when they are table entries, for

example) but not others.” A clean language would have no illogical restrictions,

but be extensible, and tries to “find the best possible layout for the given content.”

(Kingston 1993b)

15

While the use of macros as means of extending an existing DF system is an excel-

lent approach in theory, the author of this report has experienced that the lack of

higher level semantics often leads to very long and eventually unstructured macros

that are hard to debug. The overall process of extending these systems is very

time consuming in practice.

According to Jeffrey H. Kingston (author of lout), the result of using a high-level

language for DF is improved productivity allowing an unprecedented repertoire

of advanced features presented to the non-expert user. He claims that “an equa-

tion formatting application, which may be difficult or impossible to add to other

systems, can be written in Lout in a few days.” (Kingston 1993a)

To the expert user lout is a functional programming language able to manipulate

objects (text with vertical and horizontal alignment), definitions (of operators that

take objects and return objects), cross references, and galleys. Galleys are used to

insert text into the document in a place other than where it was entered (the same

concept as diversions and traps in troff, or floating insertions in TEX). For example

a footnote is entered inside a paragraph but it should appear at the bottom of the

page. (Kingston 2000, Kingston 1992)

While to the non-expert user it is a markup language not any more complex than

troff or TEX.

2.9 Classification of DF Systems

The following table 2.1 classifies the systems described in this chapter according

to the markup technique they employed. It also serves as a condensed overview

of features introduced.

16

Table 2.1. Classification of DF Systems

System Year Markup Significance
RUNOFF 1964 procedural Commands as physical characteristics
GML 1969 declarative Declarative, hierarchical markup, DTDs
nroff 1976 procedural Programmable through macros
Bravo 1978 procedural What-you-see-is-what-you-get
TEX82 1982 procedural Publication Quality Mathematics
LATEX 1985 declarative Generic Coding with TEX
ISO SGML 1986 both Standard to define markup, widely adopted
PostScript 1987 procedural Industry-Standard Page Description Language
Lout 1991 declarative Typesetting Programming Language
DSSSL 1996 procedural Style Sheet Standard for SGML
XML 1996 declarative Simplified SGML, simplified parsers

17

CHAPTER 3

A DOCUMENT FORMATTING SYSTEM FOR THE
WEB

3.1 Problems with documents on the Web

A document formatting system for the Web is one whose features aim at problems

peculiar to writing for the Web. The following paragraphs outline some of those

problems:

• the layout of collaboratively edited documents needs to be consistent

• usability studies (Morkes & Nielsen (1997), Lewenstein, Edwards & Tatar

(2003)) have shown that most users scan the page, reading only a fraction

of the text; reading from screen is significantly slower than from paper,

and documents on the Web should have half the word count of their paper

equivalents (Nielsen, Schemenaur & Fox 1998, Petersen 2001)

• documents need to be small in terms of storage for reduced bandwidth re-

quirements and faster load times

• different devices and browsers are used to view the documents (sometimes

they are not viewed at all, but read out by the browser)

• documents should to be accessible to people with disabilities

18

• varying representations of one document are required for browsing, syndica-

tion, print, . . .

• Web sites are expected to be updated frequently

• special attributes innate to the Web (metadata for search engines, navigation

through hyperlinks, . . .) need to be connected with documents

3.2 Consistency

“Part of web page design includes the consistent use of textual ele-

ments” – Nielsen et al. (1998)

In order to achieve a consistent look and feel for a Web site it is vital that the

author sticks to the same rules defining the layout throughout. This can be tedious

and error-prone for one author, but it is even harder in a collaborative environment

where many different authors work on the same set of documents — a common

problem, not only for web-based authoring systems.

A possible solution to this problem is to use declarative instead of procedural

markup.

Declarative markup as opposed to procedural markup expresses the logical struc-

ture rather than physical attributes. While something is marked as a caption

(without defining the appearance of a caption) using the declarative approach,

the same text might be marked as twelve points in size and to be typeset in bold-

face using a sans-serif font when using the procedural approach.

Two things are apparent: Procedural markup allows total control over the typeset

output while declarative markup separates content from representation and takes

the responsibility over the typeset output away from the writer.

19

The author believes that declarative markup leaves less room for inconsistency

— either a set of words is a caption or it is not; instead of the many different

forms possible with procedural markup (same size and font as other captions, but

different font-weight, etc.). Therefore declarative markup is a very clean way to

address the problem of inconsistency.

Declarative markup already helps if only one author is creating a document as his

sense of a nicely formatted caption may change over time, but it helps even more

if more authors are involved, as their taste in layout may differ altogether.

“Procedural markup is also inflexible. If the user decides to change the

style of his document [. . .] he will need to repeat the markup process

to reflect the changes.” – Reid (1980b)

The final look and feel of the documents is determined by a set of rules mapping

abstract documents to their tangible representation. These rules are possibly

created by layout experts with attention to findings in the field of usability and

interface design and need only be changed once for all occurrences of a caption.

Declarative markup is also referred to as structural markup or generic coded

markup while procedural markup is also known as presentational or physical

markup. Historically, the procedural approach was first (See Table 2.1, Chap-

ter 2).

3.3 Multiple Output Formats

The Web is not an online simulation of desktop publishing, elements of a hypertext

document are not purely visual. The author therefore thinks that approaching de-

sign with WYSIWYG editors, purposely designed to hide the details of markup

20

from the editor, prevents the editor from deciding a document’s structure from

a conceptual point of view and thus fails to make the most of the possibilities.

Additionally, the author draws from his experience that the markup created by

WYSIWYG editors tends to be presentational only and unnecessary bloated, re-

sulting in longer load times.

Users with disabilities or those who need to keep their hands free while interacting

with a browser, eventually use voice technology currently being incorporated into

browsers (Axelsson 2001, Loney & Festa 2003). But also syndication (Nottingham

(2003) and Winer (2003)), printing and archiving requires different representations

of a single document — hence the need for multiple output formats and another

reason for separating the content from its representation.

3.4 Conforming to Standards

Users want to access content using the user agent of their choice. This not only

includes the device, operating system, or browser version, but also window size,

screen resolution, colour depth, . . . and that is even assuming a graphical display,

which is not available to some users.

Conforming to established standards ensures compatibility with browsers in use.

• XML 1.0, W3C Recommendation, Bray (2000),

• XHTML 1.1, W3C Recommendation, Pemberton (2001),

• Cascading Style Sheets, W3C Recommendation, Bos (1998), and

• Web Content Accessibility Guidelines, W3C Recommendation, Chisholm

(1999)

21

The latter is not a standard per se, but a set of guidelines to make documents more

accessible to all users ”whatever user agent they are using [. . .] or constraints they

may be operating under [. . .]” (Chisholm 1999).

3.5 Frequent Updates

A survey (Rhodes 1998) has shown that the credibility of a Web site depends to

a large amount on the freshness of the information presented. Frequent updates

to a document should be alleviated, ideally the document should be editable from

its current location within the browser.

3.6 Web Artifacts

Users should be informed about updates, usually done at the bottom of the page.

Apart from this, a DF system for the Web needs to manage most of the information

peculiar to documents on the Web (e.g. the used text encoding, keywords for

search engines, and other kinds of metadata). It also has to permit an easy way

of linking to other hypertext documents.

3.7 Suitability of Existing Systems

The number of existing DF system that meet this requirements is limited. The

industry standard page description languages, PostScript and PDF, serve a com-

pletely different need. They were designed to have full control over produced

output in a device-independent manner, so programmers would not have to adapt

their programmes’ output to different printers, but use a standard page description

language as means of communicating the graphical representation.

22

This is contrary to the idea of the Web as a networked collection of inter-connected

documents where fast access is more important than exact placement, size, or

fonts. Nevertheless it is sometimes necessary to provide documents in PDF format

for archiving (all external objects, such as pictures are included in a single file) or

printing (to retain the exact layout), so every system serves a special purpose.

Being amenable to transfer without special encoding, easy processability, and

coherent markup used throughout to allow for simple information retrieval tools,

among other points mentioned in this chapter argue in favor of a generic coding

approach.

Multiple representations for different uses underscore the need for a declarative

system, which allows easy transforming between physical representations.

As SGML was widely used at the CERN, where the Web was born, the Hypertext

Markup Language has been strongly influenced by SGML. But due to the explicit

nature of SGML-based markup and the aforementioned best practices that intro-

duce their own set of limitations, it is tedious to be created by hand, hence the

need for a system that provides an interface which is as comfortable to humans,

as SGML-applications are to parsers.

3.8 Summarized Requirements

The purpose of a DF system for the Web thus is to provide an easy to use interface

to collaboratively edit documents that are independent of their representation.

Authors should be freed of the responsibility over the layout and supported in

composing their thoughts into documents while at the same time the DF system

endorses best practices of writing for the Web and ensures standards compliant,

minimal markup with a coherent look and feel.

23

Ideally the DF system can be used from within a browser without resorting to

special browser dependent techniques. All the processing could be done on the

server side, which also ensures that users are working with the same version of the

DF system.

All these factors influenced the design of the Biloba DF system.

24

CHAPTER 4

THE BILOBA DF SYSTEM

4.1 Overview

The Biloba DF system is an extensible system developed to meet the requirements

stated in section 3.8. It consists of two main parts: the STX Parser, and a set

of Output Writers. Data flow diagrams part of the analysis can be found in

Appendix A. As shown in Figure 4.1 there are two interfaces to the system: the

Web interface that makes it possible to run Biloba on the Web server formatting

documents submitted via HTTP requests and a command-line interface so that

the system can be used off-line as well. For details on how to use Biloba please

refer to the User’s Guide in appendix C.

Splitting the system in two separate parts, the parser and the output writer,

permits maximum output format flexibility.

The Biloba DF system is written in the REBOL programming language. For

details see http://www.rebol.com/. The documented source code is available on

the accompanying CD.

4.2 Parser

The parser splits the source form into an ordered list of lines to transform the

source form according to the structured text rules (see App. E) into an abstract

25

http://www.rebol.com/

Figure 4.1. Biloba Architecture

26

Figure 4.2. Node Definition in BNF

<document> ::= ‘[’ document ‘[’ <content> ‘]’ ‘]’

<content> ::= (*empty*)

| <node-or-string> <content>

<node-or-string ::= <node>

| <string>

<node> ::= <node-identifier> ‘[’ <content> ‘]’

<node-identifier> ::= (*alphanumeric atom*)

<string> ::= ‘"’ (*any character*) ‘"’

Figure 4.3. Sample Quote in Structured Text Source Form

...

"Man is not the sum of what he has already,

but rather the sum of what he does not yet have,

of what he could have." --Jean-Paul Sartre

...

tree representation. For efficiency, the document is parsed one line at a time with

a lookbehind buffer of one line which is further reduced to the metrics indentation

and document element type.

Every structural element1 becomes a node in this tree. Nodes consist of a node

identifier followed by an optionally empty list of further nodes and strings repre-

senting the node’s content (Fig. 4.2). This definition allows nodes to have mixed

content, which is required for inline formatting.

The root of the tree is the implicit node document.

Figure 4.3 shows a sample source for a quote that is part of a larger document.

For illustration purposes the rest of the document is only indicated by ‘. . . ’.

1captions, paragraphs, list items, . . .

27

quote

�
���

���

H
HHH

HHH

speech

Man is not the sum of . . .

source

Jean-Paul Sartre

Figure 4.4. Tree Representation of the Sample Source

After parsing the source into the paragraph tree, the example is internally repre-

sented as illustrated in Figure 4.4. The document element quote consists of two

sub-nodes, speech and source, representing what was said and by whom respec-

tively. The quote is contained in the list of sub-nodes of its parent node which is

eventually a paragraph or the toplevel node document.

4.3 Output Writer

Creating the tangible representation from the internal representation is achieved

by a depth-first tree traversal done by the appropriate output writer transforming

the nodes into markup.

Currently available output formats are

• a debug output writer that dumps the tree in REBOL-readable form

• a html output writer that creates valid XHTML to be displayed in a browser

• a xml output writer that creates valid XML to be used as source for further

processing, and

• a tex output writer that translates the tree into TEX commands to be con-

verted into PDF, DVI, PostScript, . . . by the TEX program

28

Figure 4.5. Sample Quote in XML format

<?xml version="1.0" encoding="iso-8859-1" ?>

<document>

<line>...</line>

<quote>

<speech>Man is not the sum of what he has

already, but rather the sum of what he

does not yet have, of what he could have.</speech>

<source>Jean-Paul Sartre</source>

</quote>

<line>...</line>

</document>

Transforming the quote in Figure 4.3 using the xml output writer yields the XML

document in Figure 4.5. The node identifiers are used as tag names. This XML

form can be used to query the data in structured text documents or to create

different representations using a transformation language such as XSLT.

Rendering the same quote (Fig. 4.3) using the default html output writer creates

a document according to the W3C’s XHTML 1.0 Strict document type definition.

Figure 4.6 shows the document with style sheet information and the document

footer being removed for clarity.

When rendered by the browser, the quote eventually appears as illustrated in

Figure 4.7. Note that the ultimate layout of the document largely depends on

the browser used to view the document, as well as the style sheet chosen from a

predefined set embedded into the generated document.

It is possible to add more output formats by writing additional output writers for

Biloba. For information on how to do this, please refer to the Expert’s Guide in

Appendix D.

29

Figure 4.6. Sample Quote in XHTML 1.0 Strict Conformant Format

<?xml version="1.0" encoding="iso-8859-1" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Biloba STX Document</title>

<!-- style sheet info removed -->

</head>

<body>

<p>...</p>

<blockquote><div><q>Man is not the sum of what he has already,

but rather the sum of what he does not yet have, of what

he could have.</q></div>

<div class="source">– Jean-Paul Sartre</div>

</blockquote>

<p>...</p>

<!-- footer removed -->

</body>

</html>

Figure 4.7. Sample Quote in XHTML 1.0 Strict Conformant Format, Rendered
by Browser

30

4.4 Figure Modules

Text that is spontaneously indented, that is indented without a prior heading, is

per definition, a figure.

The most basic type of figure is a verbatim area. Everything entered will appear

exactly as typed in the source. Physical line breaks as well as blanks are preserved

— no formatting is applied.

This is the default figure type, but by explicitly specifying the type of figure with

‘#type:<figurename>’ any other figure module can be called to interpret the text

in the figure.

This feature is applied to implement images. A special-purpose figure module

called image is called. It interprets the text as path to an image which is inserted

into the document.

Figure modules are designed with extendability in mind. Developers are encour-

aged to implement their own modules to perform syntax highlighting, formatting

of mathematical formulae or music chores, etc. For information on how to write

a figure module, please refer to the Expert’s Guide in Appendix D.

4.5 Cache

The Web interface to Biloba has a caching mechanism built in: before trying to

process a document, it is verified that the source has been modified since it was

last requested. This is done by comparing a message digest 5 (MD5) hash value

of the source with a prior saved hash value.

If the hash codes match, a prior saved version of the requested document in ren-

dered form is served.

31

If the hash codes differ, the stored snapshots of the document are out of date and

the document needs to be re-processed by parser and output writer. The new

hash value is stored along with the rendered document for later retrieval.

4.6 The Structured Text Format

Structured text (STX), introduced by the Zope Project (2001), is a “[plain] text

[format] that uses simple symbology and indentation to indicate the structure of

a document”. The original aim of the STX format was to have an easy read-

able text format that can also be transformed into a nicely formatted output.

Apart from simple text structuring and in-line rules (i.e. ‘*emphasized text*’

for emphasized text) there were few definitions.

The structured text rules had to be extended so that the most common used

text elements can be expressed without ambiguity while trying to reduce explicit

markup to an absolute minimum. This design takes the responsibility of the layout

of a document away from the author.

In order to find out which formatting elements are commonly used and which

are of theoretical interest, as used on very rare occasions only, a number of recent

(published within the last 10 years) papers from different academic fields have been

inspected. The research confirmed what common sense of good style indicated

before: sections and subsections are nested to at most three levels, lists to at most

two levels, figures have a caption, It was remarkable that only very few papers

used more than one kind of inline formatting — one style was used throughout,

most times to set off new terms from the rest of the text.

Additionally, depending on the academic field, specialized objects were used (math-

ematical formulae, tabular data, chemical symbols, music scores, . . .).

32

Rules that define how certain text elements are expressed in plain text were devel-

oped. As more text elements were added to the definition, the existing rules were

continuously refined so that the result was a consistent set of rules that remedy

ambiguity but at the same time are as near to common usage of plain text as

possible. This makes them easy to follow. The Biloba STX rules can be found in

the Appendix E.

33

CHAPTER 5

DISCUSSION

5.1 Review in Context of Related Work

5.1.1 NOTECH

The project’s research revealed NOTECH: Typesetting without Formatting, a

project that is closely related to Biloba as both use plain text with markup reduced

to an absolute minimum as source and try to infer the appropriate formatting

from the indentation and contents of the document. The NOTECH system and

report were never published (personal communication with Robert Sedgewick,

December 2003) but this author could get unpublished material by contacting

Robert Sedgewick in writing (Lipton & Sedgewick 1990).

The main difference between the two systems is that NOTECH detects physical

formatting applied to the source in order to reflect the same physical formatting

in the typeset output. A centered header or a horizontal rule that spans half the

page in the source will be exactly transformed into a centered header and the

same rule in the output. If the author inserts enough blanks before a word to

make it seem aligned with the center or the right margin, NOTECH will make it

a centered or right aligned header, as illustrated by a short excerpt of Lipton &

Sedgewick (1990) in source form (Fig. 5.1 and in rendered form (Fig. 5.2).

34

Figure 5.1. Short Excerpt of “NOTECH: Typesetting Without Formatting”
(Lipton & Sedgewick 1990), Source Form

[...] the text. If the textual

material seems to be centered or aligned with the right margin, notech

will do so, as follows:

Primary header

Subheader

Center header

Right header

If the first nonblank line in a document is a center header, it is

assumed to be a title, and is typeset in larger, boldface type. If it

is followed by a group of centered lines, they are [...]

Figure 5.2. Short Excerpt of “NOTECH: Typesetting Without Formatting”
(Lipton & Sedgewick 1990), Rendered Form

35

Biloba is more restrictive in this respect, every text element is defined by its

relative position to its previous text element. Indenting a single line of text beyond

the current level of indentation, i.e. up to what seems to be the center of the page,

will not result in a centered header as shown in Figure 5.2 but will be regarded

as spontaneous indented line. Consequently the lines “Center header” and “Right

header” will be rendered as part of a figure.

Clearly this makes it harder for the user to create centered headers. While in-

hibiting at first sight, it really is not a burden, but rather a necessity to separate

the content from its representation and to create consistent and well structured

documents. Documents in Biloba are structured into trees with headers and sub-

headers introducing the different levels. If a user wants to have all level 2 headers

to be centered, this has to be defined in the style sheet once and for all level 2 head-

ers, and not by centering the header in the source with the danger of reintroducing

inconsistencies.

Users of Biloba have no direct control over the typeset output. The author sees the

mechanisms that enforce consistency as an advantage but apparently they make

Biloba unsuitable for applications where the formatting needs to be based on

what pleases the eye. For such applications WYSIWYG systems are far superior

to non-interactive systems in general.

5.1.2 Zope STX

The Structured Text (STX) Project, part of the larger Zope Project (Zope Project

2001) created rules for simple document elements to be detected and then trans-

formed into HTML. The basic idea is the same as in this project, however the

author believes that the rules created for Biloba are less intrusive when compos-

ing documents.

36

Figures, for example, must be spontaneously indented in both systems but Zope

STX additionally requires them to have a paragraph that ends in double colons

(‘::’) in front of them. This limitation is required to unambiguously discern figures

from subordinate text elements which Biloba does by restricting headers to single

lines. It is also worth noting that no two figures can be immediately after each

other in Zope STX, the author always has to insert a paragraph followed by ‘::’.

Motivated by the limitations of the original STX, the Zope Community started to

develop the ”next generation” of Structured Text which is now easier to handle

by authors.

5.2 Evaluation

In its current form, Biloba handles all text elements planned to be developed for

this project. This includes most, but not all of the rules stated in Appendix E.

According to the large set of unit and regression tests created to verify the system,

these rules are correctly implemented. While this verification method was a great

help developing the system, it does neither verify that the system can be used

by following commonly agreed upon rules of style nor that the rules are complete

enough to create real documents.

To get this kind of feedback, the author made the DF system available to former

and present colleagues who adopted Biloba to be used in ongoing projects. As

a proof of concept, this report and the project’s Web site were created using the

Biloba DF system.

Based on the feedback gained from these real-world uses, strengths and weaknesses

of the Biloba DF system are summarized in the following paragraphs.

37

5.2.1 Strengths of Biloba

Most of the investigated systems have in common that they are designed to be an

easy to use interface to create nicely formatted documents, but they ignore the

document’s underlying semantics and logical structure. As a result, those systems

are limited to a small number of output formats their developers planned for in

the first place. Some of the systems even restricted the documents to a single

format that was hard-coded into the DF system.

Organising Biloba around the concepts of natural inferences about document

structure and a logical representation of the documents provides for an easy to

use interface to create valid documents in a large number of formats. Freeing

authors of the responsibility over the markup they create ensures valid, standards

compliant markup is created at all times.

Using the Biloba DF system for actual report writing tasks reaffirmed that the

rules derived from common-sense, commonly accepted style rules free authors

from explicitly worrying about formatting commands but enables authors to type

documents without thinking about anything but the content they are creating.

Typesetting this report was less laboured than creating the interim report or any

of the regular progress reports.

By implementing Biloba as batch formatting system, it is possible to deploy the

DF system from directly within the browser without the need for special-purpose

software. Users type their documents in a ‘textarea’ form field and submit the doc-

ument to be processed at the server. This decision also allows that Biloba is used

from the command line for offline preparation of Web sites or other documents.

Finally, using plain text as input format has these additional advantages over text

with markup or even binary formats:

38

• Plain text is amenable to transfer between machines without special encod-

ing or loss of information

• Plain text files are independent of the program they once were created for.

Users do not have to fear that documents they created become obsolete.

• Plain text can be edited with a large number of existing tools. Users do not

have to change their current editing habits to use Biloba.

• In particular, operating systems as Unix provide a wide range of tools that

operate on plain text and are less useful when the text is interspersed with

formatting commands.

• Text documents can be put under version control with the benefit of differen-

tial updates. RCS, and therefore CVS (which uses RCS) too, can only store

full copies of changing binary files. (Note that this limitation does not apply

to the recently released version control system Subversion, which also stores

binary files differentially.) (Collins-Sussman, Fitzpatrick & Pilato 2004)

5.2.2 Weaknesses of Biloba

The thing most often complained about was the complicated setup, which is due

to the flexible nature of the system — it can be deployed in combination with

any CGI-capable Web server on more than 40 platforms1 provided it is correctly

configured to work in the chosen environment. A setup wizard that installs and

configures the Apache HTTP Server with Biloba is envisaged for further work.

One result of Biloba’s philosophy is that it is limited to document elements which

can be unambiguously inferred from common-sense rules. Another limitation re-

1subject to the availability of a REBOL interpreter for the specific platform. For details see
http://www.rebol.com/prod-core.html.

39

http://www.rebol.com/prod-core.html

sults from the fact that Biloba does not offer full control over the physical layout

or macro programming capabilities (like troff, TEX, and Lout) which could be used

to extend and adapt the system to individual needs.

Clearly this poses a drastic limit to what can be done with Biloba. In essence it

reduces Biloba to formatting tasks already implemented in the system and in its

current form the number of formatting tasks is reduced to a very restricted, but

useable set.

The mechanism of figure modules described in Section 4.4 were developed with

extendability in mind. However, as it stands these modules can only be used

to format text found in figures. Adding functionality outside figures requires re-

programming of the system.

Parsing of plain text files based on commonly accepted style rules obviously lacks a

coherent theoretical base. The rules proposed as part of this project try to address

this problem by finding a common denominator. But after all, it is possible that

different users have different ideas of how a certain text element is to be typed in

the source file.

Another objection from a completely different kind of user is that not using a

graphical interface is just too “old fashioned” (Lipton & Sedgewick 1990). The

immediate feedback in exactly the form of the final output as found in WYSIWYG

editors is superior to non-interactive systems, but current WYSIWYG systems ne-

glect the structure and semantical aspects of documents so the resulting documents

are rarely more than only what can be seen. The author believes that this would

be a major disadvantage if used for the Web where exact control over the layout is

subordinate to structure, processability, load time, and at most: content — which

an easy to use interface allows to concentrate on.

40

CHAPTER 6

CONCLUSION

In scope of this final year project an investigation of existing document formatting

systems and their contributions to the future of document formatting has been

carried out. The report gave a concise overview of developments that continue to

have an influence on today’s systems.

It has been shown what the requirements for a document formatting system tai-

lored to the Web are and how these requirements can possibly be addressed. A set

of rules that specify common document elements have been proposed, the theoret-

ical work was supported by the implementation of Biloba, a document formatting

system prototype that tries to fulfill these needs.

Biloba infers the logical structure of a document from parsing a plain text docu-

ment by rules based on commonly accepted style. Internally, the documents are

declaratively represented as trees, since this reflects their innate structure best.

A single-pass traversal of this tree, done by a specific Output Writer, transforms

its nodes into valid markup of the chosen format that conforms to useability and

accessibility guidelines.

It was argued that this approach not only lets the author concentrate on writing

instead of programming formatting commands, but also endorses established best

practices and reduces the risk of inconsistencies while supporting the author in

creating high-quality content for a Web audience.

41

Conversely, this approach limits Biloba to document elements which can be un-

ambiguously inferred from common-sense rules. Also, there is a limit of what can

be done with declarative markup: adding further document elements requires ex-

tending the system, whereas full control over the output, as offered by procedural

markup, in combination with macro programming capabilities could be used to

extend and adapt the system to individual needs.

The review of Biloba underscored that the prototype, however incomplete it is,

can already be employed for a relatively large number of formatting tasks with

different formats and in different environments. What follows are open questions

that provide for opportunities of further research worthwhile to pursue.

6.1 Extending Biloba

Text elements that were already specified but not implemented by the parser

include abbreviations that are automatically looked up in a project-wide abbrevi-

ation database, footnotes, referencing, automatic index generation, mathematical

formulae, and other special symbols often used in academic or technical docu-

ments, could be added to future versions of Biloba.

The author plans to continue the development of Biloba as open source project.

The source code will be publicly available through the project’s Web site1 for

others to use it and eventually contribute to the development.

The further plan includes implementing a figure module that uses the syntax files

of the ‘vi’ editor to achieve syntax highlighting for source code based on the rich

set of existing syntax files and to implement an additional output writer for PDF

1http://plain.at/vpavlu/BilobaSTX/

42

http://plain.at/vpavlu/BilobaSTX/

documents. Other output formats that seem interesting in the context of the Web

include DocBook XML as well as the syndication formats RSS and Atom.

As mentioned in the discussion (Sect. 5.2.2), parsing of plain text based on com-

monly accepted style rules lacks a coherent theoretical base. A viable solution to

this problem is to formalize the parsing of the plain text sources and to rewrite the

Biloba DF system as an interpreter for parsing rules defined in a formal language.

The system could be tailored to individual user needs and additional document

elements by defining rules in the formal language.

Although this method possibly leads to different rule sets with source documents

being incompatible, this idea is worthwhile to pick up for further work as extend-

ability and maintainability would vastly improve if the rules to parse the source

files were defined in a formal language that is interpreted by Biloba rather than

directly hard-coded into the system.

6.2 Broader Perspective

Putting guidelines of writing for the Web directly into the context of a DF system

seems promising. Biloba already offers endorsement of recommendations on a

syntactical level but the system could be extended to include guidelines on a

semantic level to further support authors in their tasks.

A thesaurus system could be added that recommends replacing complex words

with simpler ones, large documents could be split up into multiple hyperlinked

documents for easier access, text mining methods could be used to automatically

create summaries and keyword lists for users or search engines, etc. (Guidelines:

Morkes & Nielsen (1997), Nielsen et al. (1998), Nielsen (1999), Nielsen (2000), and

Kilian (2000))

43

Based on the knowledge gained in the course of this project the author believes

that advancements in the field of non-interactive DF systems will also influence

interactive WYSIWYG systems, which seem to dominate already, though some-

times inferior to non-interactive typesetting systems. Most considerable for a

document formatting system for the Web, these systems often deliberately ignore

the semantics of a document.

He further thinks that merging the flexibility achieved through declarative for-

matting, programmability, and extendability — features currently most often only

found in non-interactive systems — with interactive, graphical user interfaces and

recent insights in the field of human computer interaction such as demonstrational

interfaces and programming by example to yield a system that unifies the advan-

tages of both worlds is strongly desirable and could be successfully incorporated

into formatting systems for collaborative and dynamic environments such as the

Web.

During research, the author has come over a number of experiments (Quint &

Vatton (1986), Graham, Harrison & Munson (1992), Cowan, Mackie, Pianosi &

de V. Smit (1991), Furuta, Quint & André (1988), and Murata & Hayashi (1992))

that try to combine structured documents with interactive editing.

“Implementing a structured documents interactive editor/formatter is

still an open challenge” – Roisin & Vatton (1993)

Albeit the unquestionable value of a system that unifies advantages of both DF

worlds, the author believes, that currently it is a better idea to have a working

system that does one thing well. The Biloba document formatting system is to be

understood as this working compromise.

44

BIBLIOGRAPHY

Adobe Systems, I., ed. (1999), PostScript Language Reference, third edn, Addison-
Wesley.

André, J., Brüggemann-Klein, A., Furuta, R. & Quint, V. (1994), ‘History of
document processing’.
URL: citeseer. nj. nec. com/ 333125. html [accessed 17 October, 2003]

Axelsson, J. e. a. (2001), ‘XHTML+Voice Profile 1.0’.
URL: http: // www. w3. org/ TR/ 2001/ NOTE-xhtml+ voice-20011221

[accessed 29 March, 2004]

Barron, D. W. (1989), ‘Why use SGML?’, Electronic Publishing - Origination,
Dissemination, and Design 2(1), 3–24.
URL: http: // portal. acm. org/ citation. cfm? id= 71826 [accessed 7
November, 2004]

Bos, B. e. a. (1998), ‘Cascading Style Sheets (CSS) layer 2, W3C recommenda-
tion’.
URL: http: // www. w3. org/ TR/ 1998/ REC-CSS2-19980512 [accessed 4
October, 2003]

Bray, T. e. a. (2000), ‘Extensible Markup Language (XML) 1.0, W3C recommen-
dation’.
URL: http: // www. w3. org/ TR/ 2000/ REC-xml-20001006. pdf [ac-
cessed 4 October, 2003]

Briet, S. (1951), Qu’est-ce que la documentation, Paris: Éditions Documentaires
Industrielles et Techniques (EDIT).

Buckland, M. (1997), ‘What is a ”document”?’, Journal of the American Society
of Information Science 48(9), 804–809.

Chisholm, W. e. a. (1999), ‘Web Content Accessibility Guidelines 1.0, W3C Rec-
ommendation’.
URL: http: // www. w3. org/ TR/ WCAG10/ [accessed 14 March, 2004]

Collins-Sussman, B., Fitzpatrick, B. W. & Pilato, C. M. (2004), Version Control
with Subversion, O’Reilly and Associates.
URL: http: // svnbook. red-bean. com/ [accessed 22 April, 2004]

45

citeseer.nj.nec.com/333125.html
http://www.w3.org/TR/2001/NOTE-xhtml+voice-20011221
http://portal.acm.org/citation.cfm?id=71826
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/2000/REC-xml-20001006.pdf
http://www.w3.org/TR/WCAG10/
http://svnbook.red-bean.com/

Cowan, D. D., Mackie, E. W., Pianosi, G. M. & de V. Smit, G. (1991), ‘Rita - an
editor and user interface for manipulating structured documents’, Electronic
Publishing – Origination, Dissemination, and Design 4(3), 125–150.
URL: citeseer.nj.nec.com/cowan91rita.html [accessed 22 October, 2003]

Darwin, I. F. (1984), ‘A history of UNIX before berkeley: UNIX evolution: 1975-
1984’.

Fisher, T. A. (1994), groff Manual Page.
URL: http: // www. cs. pdx. edu/ ~trent/ gnu/ groff/ groff. html ,
[accessed 2 February, 2004]

Furuta, R. K. (1992), ‘Important papers in the history of document preparation
systems: basic sources’, Electronic Publishing – Origination, Dissemination,
and Design 5(1), 19–44.
URL: citeseer. nj. nec. com/ furuta92important. html [accessed 19
October, 2003]

Furuta, R., Quint, V. & André, J. (1988), ‘Interactively editing structured doc-
uments’, Electronic Publishing - Origination, Dissemination, and Design
1(1), 19–44.

Furuta, R., Scofield, J. & Shaw, A. (1982), ‘Document formatting systems: Survey,
concepts, and issues’, ACM Computing Surveys 14(3), 417–472.
URL: http: // portal. acm. org/ citation. cfm? id= 356891 [accessed 6
March, 2004]

Goldfarb, C. F. (1990), The SGML Handbook, Clarendon Press, Oxford.

Goossens, M. (n.d.), ‘LATEX, an overview’.
URL: citeseer. nj. nec. com/ 516927. html [accessed 25 January, 2004]

Graham, S. L., Harrison, M. A. & Munson, E. V. (1992), The Proteus presentation
system, in ‘Proceedings of the ACM SIGSOFT Fifth Symposium on Software
Development Environments’, ACM Press, pp. 130–138.
URL: citeseer. nj. nec. com/ graham92proteus. html [accessed 20 Oc-
tober, 2003]

Hopgood, B. (2002), ‘History of SGML’.
URL: http: // wwwcms. brookes. ac. uk/ modules/ web_ tech/ p08770/

s1b_ sgml/ overview. htm [accessed 18 February, 2004]

IBM Archives: 1961 (1961).
URL: http: // www. ibm. com/ ibm/ history/ history/ year_ 1961. html
[accessed 31 January, 2004]

Kernighan, B. W. (1981), A Typesetter-Independent TROFF, Bell Labs.

Kernighan, B. W., Lesk, M. E. & Ossanna, J. F. (1978), ‘UNIX time-sharing
system: Document preparation’, Technical Journal 57(6), 2115–2135.

46

http://www.cs.pdx.edu/~trent/gnu/groff/groff.html
citeseer.nj.nec.com/furuta92important.html
http://portal.acm.org/citation.cfm?id=356891
citeseer.nj.nec.com/516927.html
citeseer.nj.nec.com/graham92proteus.html
http://wwwcms.brookes.ac.uk/modules/web_tech/p08770/s1b_sgml/overview.htm
http://wwwcms.brookes.ac.uk/modules/web_tech/p08770/s1b_sgml/overview.htm
http://www.ibm.com/ibm/history/history/year_1961.html

Kilian, C. (2000), Writing for the Web, Self Counsel Press.

Kingston, J. H. (1992), ‘A new approach to document formatting’.
URL: http: // snark. niif. spb. su/ ~uwe/ lout/ overview. ps. gz [ac-
cessed 2 March, 2004]

Kingston, J. H. (1993a), ‘The Design and Implementation of the Lout Document
Formatting Language’, Software - Practice and Experience 23(9), 1001–1041.
URL: citeseer. nj. nec. com/ kingston93design. html [accessed 2
March, 2004]

Kingston, J. H. (1993b), ‘The future of document formatting’.
URL: citeseer. nj. nec. com/ 340599. html [accessed 2 March, 2004]

Kingston, J. H. (2000), ‘An Expert’s Guide to the Lout Document Formatting
System’.
URL: citeseer. nj. nec. com/ kingston00experts. html [accessed 2
March, 2004]

Knuth, D. E. (1984), The TEXbook, Addison-Wesley.

Lamport, L. (1986), LATEX: A Document Preparation System, Addison-Wesley.

Lampson, B. W. (1976), Bravo Manual in Alto User’s Handbook.

Lesk, M. E. (1978), Typing Documents on the UNIX System: Using the -ms
Macros with Troff and Nroff, AT&T Bell Laboratories.

Lewenstein, M., Edwards, G. & Tatar, D. (2003), ‘Stanford Poynter Project’.
URL: http: // www. poynterextra. org/ et/ i. htm [accessed 30 March,
2004]

Linotype History: 1886 – 1899 (n.d.).
URL: http: // www. linotype. com/ webcontent/ index. omeco?

CURRENTFOLDERID= 1663 [accessed 31 January, 2004]

Lipton, R. J. & Sedgewick, R. (1990), ‘NOTECH: Typesetting without Format-
ting’.

Loney, M. & Festa, P. (2003), ‘Opera’s browser finds its voice’.
URL: http: // zdnet. com. com/ 2102-1104_ 2-5178061. html [accessed
29 March, 2004]

Meyrowitz, N. & van Dam, A. (1982a), ‘Interactive editing systems: Part I’, ACM
Computing Surveys 14(3), 321–352.

Meyrowitz, N. & van Dam, A. (1982b), ‘Interactive editing systems: Part II’, ACM
Computing Surveys 14(3), 353–415.

47

http://snark.niif.spb.su/~uwe/lout/overview.ps.gz
citeseer.nj.nec.com/kingston93design.html
citeseer.nj.nec.com/340599.html
citeseer.nj.nec.com/kingston00experts.html
http://www.poynterextra.org/et/i.htm
http://www.linotype.com/webcontent/index.omeco?CURRENTFOLDERID=1663
http://www.linotype.com/webcontent/index.omeco?CURRENTFOLDERID=1663
http://zdnet.com.com/2102-1104_2-5178061.html

Morkes, J. & Nielsen, J. (1997), ‘Concise, scannable, and objective: How to write
for the Web’.
URL: http: // www. useit. com/ papers/ webwriting/ writing. html

[accessed 29 March, 2004]

Murata, M. & Hayashi, K. (1992), Formatter hierarchy for structured documents,
pp. 77–94.

Myers, B. A. (1998), ‘A brief history of human-computer interaction technology’,
interactions 5(2), 44–54.

Nielsen, J. (1999), ‘The Top Ten New Mistakes of Web Design’.
URL: http: // www. useit. com/ alertbox/ 990530. html [accessed 14
March, 2004]

Nielsen, J. (2000), Designing Web Usability: The Practice of Simplicity, New
Riders Publishing.

Nielsen, J., Schemenaur, P. & Fox, J. (1998), ‘Writing for the Web’.
URL: http: // www. sun. com/ 980713/ webwriting/ [accessed 16 March,
2004]

Nottingham, M. (2003), ‘The Atom Syndication Format 0.3 (PRE-DRAFT)’.
URL: http: // www. atomenabled. org/ developers/ syndication/

atom-format-spec. php [accessed 29 March, 2004]

Ossanna, J. F. (1976), Troff User’s Manual.
URL: http: // plan9. bell-labs. com/ sys/ doc/ troff. html [accessed
3 February, 2004]

Pemberton, S. e. a. (2001), ‘XHTML 1.1 - module-based XHTML, W3C recom-
mendation’.
URL: http: // www. w3. org/ TR/ xhtml11/ xhtml11. pdf [accessed 4 Oc-
tober, 2003]

Petersen, C. (2001), ‘Writing for a Web audience’.
URL: http: // www-106. ibm. com/ developerworks/ usability/

library/ us-writ/ [accessed 27 March, 2004]

Quint, V. & Vatton, I. (1986), Grif: an interactive system for structured document
manipulation, in ‘Text Processing and Document Manipulation, Proceedings
of the International Conference’, Cambridge University Press, pp. 200–213.

Reid, B. K. (1980a), A high-level approach to computer document formatting, in
‘Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages’, ACM Press, pp. 24–31.
URL: http: // portal. acm. org/ citation. cfm? id= 567449 [accessed 6
March, 2004]

48

http://www.useit.com/papers/webwriting/writing.html
http://www.useit.com/alertbox/990530.html
http://www.sun.com/980713/webwriting/
http://www.atomenabled.org/developers/syndication/atom-format-spec.php
http://www.atomenabled.org/developers/syndication/atom-format-spec.php
http://plan9.bell-labs.com/sys/doc/troff.html
http://www.w3.org/TR/xhtml11/xhtml11.pdf
http://www-106.ibm.com/developerworks/usability/library/us-writ/
http://www-106.ibm.com/developerworks/usability/library/us-writ/
http://portal.acm.org/citation.cfm?id=567449

Reid, B. K. (1980b), Scribe: A Document Specification Language and its Compiler,
PhD thesis, Carnegie-Mellon University.

Reid, B. K. & Hanson, D. (1981), An annotated bibliography of background ma-
terial on text manipulation, in ‘Proceedings of the ACM SIGPLAN SIGOA
symposium on Text manipulation’, pp. 157–160.

Reid, B. K. & Walker, J. H. (1980), Scribe User’s Manual, third edn, Unilogic,
Ltd.

Rhodes, J. S. (1998), ‘How to gain the trust of your users’.
URL: http: // www. webword. com/ moving/ trust. html [accessed 16
February, 2004]

Roisin, C. & Vatton, I. (1993), ‘Merging logical and physical structures in doc-
uments’, Electronic Publishing - Origination, Dissemination, and Design
6(4), 327–337.

Saltzer, J. H. (1965), The Compatible Time-Sharing System, A Programmers
Guide, 2 edn, MIT Press, chapter Manuscript typing and editing: TYPSET,
RUNOFF, p. section AH.9.01.

Spring, M. B. (1991), ‘Electronic printing and publishing: The document
processing revolution’.
URL: http: // www. sis. pitt. edu/ ~spring/ courses/ molde_ lec_

2001. html [accessed 27 January, 2004]

Technical Committee JTC 1/SC 34, I. (1996), ‘ISO/IEC 10179:1996 Document
Style Semantics and Specification Language (DSSSL)’.
URL: [accessed 5 October, 2003]

TEX Users Group (2000), ‘Basic information about TEX’.
URL: http: // www. tug. org/ whatis. html [accessed 12 January, 2004]

van Dam, A. & Rice, D. E. (1971), ‘On-line text editing: A survey’, ACM Com-
puting Surveys 3(3), 93–114.

van Vleck, T. (1995), ‘The IBM 7094 and CTSS’. updated 2003.
URL: http: // www. multicians. org/ thvv/ 7094. html [accessed 20 Oc-
tober, 2003]

Winer, D. (2003), ‘RSS 2.0 specification’.
URL: http: // blogs. law. harvard. edu/ tech/ rss [accessed 29 March,
2004]

Zope Project (2001), ‘Structured Text Wiki’.
URL: http: // dev. zope. org/ Members/ jim/ StructuredTextWiki/

FrontPage [accessed 14 February, 2004]

49

http://www.webword.com/moving/trust.html
http://www.sis.pitt.edu/~spring/courses/molde_lec_2001.html
http://www.sis.pitt.edu/~spring/courses/molde_lec_2001.html
http://www.tug.org/whatis.html
http://www.multicians.org/thvv/7094.html
http://blogs.law.harvard.edu/tech/rss
http://dev.zope.org/Members/jim/StructuredTextWiki/FrontPage
http://dev.zope.org/Members/jim/StructuredTextWiki/FrontPage

APPENDIX A

STRUCTURED ANALYSIS DIAGRAMS

50

Figure A.1. Context Diagram

Figure A.2. Diagram 0: Biloba

51

Figure A.3. Detail Diagram 2: Parse Document

52

APPENDIX B

COMMENTED SOURCE CODE

B.1 Parser Core Files

The commented source code can be found in the directories ‘source/’ and ‘source/lib/’
on the accompanying CD.

‘biloba.r’ represents the Web interface, ‘stxify.r’ represents the command line
interface. Both interfaces prepare the incoming data before including the file
‘main.r’ that does the actual parsing and inline formatting.

‘lib/parse-block.r’ contains the definition for ‘parse-block’ and ‘parse-list-block’
which are recursively called for blocks of text and lists, respectively.

‘lib/figure.r’ is called by ‘parse-block’ when a figure needs to be parsed. It
tries to find a matching figure module located in ‘source/modules/’ and executes
it or the default module, if none could be found.

‘lib/inline-formatting.r’ is responsible for the inline formatting. It is invoked
by ‘main.r’.

Finally, ‘lib/escape.r’ provides definitions for the functions that perform the
backslash- and HTML- escaping. Invoked by ‘main.r’.

B.2 Output Writer

The commented source code can be found in the file ‘source/lib/output-writer.r’
on the accompanying CD.

The output writer is invoked directly from the interfaces (‘biloba.r’ or ‘stxify.r’).

53

B.3 Figure Modules

The commented source code can be found in the directory ‘source/modules/’ on
the accompanying CD.

B.4 Style Sheets

The style sheets can be found in the directory ‘source/style/’ on the accompa-
nying CD.

B.5 Test Harness

The source code for the test harness can be found in the directory ‘test_harness/biloba/’
on the accompanying CD.

54

APPENDIX C

BILOBA STX – USER’S GUIDE

55

Biloba STX
User’s Guide

Version 1.0
7-Apr-2004

Contents

1 Preparation 4
1.1 About This Document . 4
1.2 Basic Concepts . 4
1.3 Test Environment . 5

2 Introduction to Biloba 6
2.1 Your First Document . 6
2.2 Paragraphs and Captions . 6
2.3 Term Definitions and Quotes . 7
2.4 Lists . 12
2.5 Inline Formatting . 14
2.6 Adding Images . 15
2.7 Adding Example Text . 17
2.8 Further Reading . 17

2

List of Figures

2.1 Source: A Simple Section . 7
2.2 Rendered: A Simple Section . 7
2.3 Source: Nested Sections . 8
2.4 Rendered: Nested Sections . 9
2.5 Source: Term/Definition Pairs . 10
2.6 Rendered: Term/Definition Pairs 10
2.7 Source: A Quotation . 10
2.8 Rendered: A Quotation . 11
2.9 Source: Nested Sections Restructured Using Special Forms 11
2.10 Rendered: Nested Sections Restructured Using Special Forms . . . 11
2.11 Source: An Itemized List . 12
2.12 Rendered: An Itemized List . 12
2.13 Source: A Numbered List . 13
2.14 Rendered: A Numbered List . 13
2.15 Source: Two Lists . 13
2.16 Rendered: Two Lists . 13
2.17 Source: Inline Formatting . 14
2.18 Rendered: Inline Formatting . 14
2.19 Source: Hyperlinks . 14
2.20 Rendered: Hyperlinks . 15
2.21 Source: A Horizontal Rule . 15
2.22 Rendered: A Horizontal Rule . 15
2.23 Source: Adding an Image . 16
2.24 Rendered: Adding an Image . 16
2.25 Source: Preventing a Caption . 16
2.26 Rendered: Preventing a Caption . 17
2.27 A Simple C Program . 18
2.28 Rendered: Adding a Program Listing 18

3

Chapter 1

Preparation

1.1 About This Document

This is the User’s Guide to the Biloba document formatting system. It takes the
reader on a guided tour through the process of creating documents with Biloba.
Starting with the creation of a simplistic document, more and more features are
explained as the reader progresses.

For details about the setup process, Biloba’s internals or how to extend the system,
please refer to the Expert’s Guide.

Biloba is a non-interactive document formatting system specifically designed for
documents on the Web. It was developed as a project completed as part of the
requirements for the BSc. (Hons) Computer Studies by Viktor C. Pavlu under the
supervision of Carlton McDonald at the University of Derby in the years 2003-
2004.

1.2 Basic Concepts

Biloba takes a document in plain text format and converts it into the output
format of your choice. Currently you can choose from the following formats:

• XHTML Extensible Hypertext Markup Language. The standard format
for documents on the Internet.

• TEX A very popular file format in the scientific and academic communities.
Can be converted to PDF (and other) files.

• XML Extensible Markup Language. A standard format for structured data.

4

• debug, raw Representation of the document’s logical structure.

Most users would want their documents converted to XHTML.

1.3 Test Environment

For the purpose of this guide, we will use the Biloba STX Test Harness which can
be found on the CD. It is a very simple environment that needs no configuration
by the user — it can be started right away but needs to be copied from the CD
to your local drive as temporary files have to be created which is not possible on
the CD.

To start it, copy the directory ‘test_harness’ to your local hard disk and execute
‘start.bat’ which will start the Web server required to run Biloba. If the server
was successfully started, you will see a window displaying the text

‘Copyright (c) 1991-2003 iMatix Corporation’.

Do not close this window while using the test harness.

Your browser displays the Biloba STX Test Harness page (redirect.html). Go
directly to the Test Environment, a page where you can enter STX documents for
testing purposes. This is the environment used for this guide.

The way documents are formatted does not differ whether you use this simple
pre-configured test environment or any other interface. Biloba can be configured
to run embedded in your Web server or as a command line tool. The Expert’s
Guide tells you how to setup Biloba for your needs.

5

Chapter 2

Introduction to Biloba

2.1 Your First Document

Go to the test environment as described in the previous section.

Push the Render my Document button and you will see the document from the
text area rendered into HTML. Hit your browser’s back button to return to the
text area where you can edit the source of the document. Modify the text and
push the Render my Document button again. The rendered document has changed
accordingly.

Whenever you push the Render my Document button, Biloba is invoked to trans-
form your document. It parses the source in the text area and converts it into the
format you have selected in the dropdown box left to the button. Have Biloba
render your document into another format to get the idea.

2.2 Paragraphs and Captions

Biloba’s Structured Text is organised around the concept of text elements. A text
element consists of one or more non-empty lines that have the same indentation
on each line. Indentation refers to the number of blanks at the beginning of a line.

A structured document consists of sections which may contain sub-sections which
again may contain sub-sections and so on. Every section is introduced by a caption
giving the name of the section followed by at least one text element that forms
the body of the section.

Every text element after a caption that is indented two characters relative to the
caption belongs to the body of that caption. Together, a caption and its body

6

Figure 2.1: Source: A Simple Section
Caption

This is a part

of /Caption’s/ body.

So is this.

Figure 2.2: Rendered: A Simple Section

elements form a section.

Here is an example:

”Caption” is the caption for the section and the two paragraphs ”This is...” and
”So is this.” form the body of the section.

Try the example in the test environment to see how Biloba renders them.

Note that captions are not allowed to span multiple lines.

Sections and sub-sections can be nested:

Here we have a section with two paragraphs followed by three sub-sections each
of which contains further paragraphs.

2.3 Term Definitions and Quotes

In the previous section we had an example of three sections that only consisted of
a word and its definition. The word was put as the caption of the section and the
section’s body contained its definition.

As terms and their definition are a very common thing in documents, Biloba has
a special form to express that something is such a term/definition pair.

By adding the information that something is a term/definition pair instead of a

7

Figure 2.3: Source: Nested Sections
Language

Ludwig von Wittgenstein once said "The limits

of language are the limits of one’s world."

Let’s have a closer look at language.

Syntax

Syntax describes the structure of

valid sentences in a language.

Semantics

Semantics describe the meaning of

a syntactically correct sentence.

Pragmatics

Pragmatics is the meaning of a

sentence put into the context of

background knowledge and experience.

8

Figure 2.4: Rendered: Nested Sections

9

Figure 2.5: Source: Term/Definition Pairs
Syntax -- structure of valid sentences in a language.

Semantics -- meaning of a syntactically correct sentence.

Pragmatics -- meaning of a sentence put into the ...

Figure 2.6: Rendered: Term/Definition Pairs

common caption followed by a paragraph, the information can be presented in a
more succinct way and will therefore be easier to convey. If all term/definition
pairs are formatted using this special form, it is also possible to set them off from
the rest of the text and thus making it easier for the reader to find a certain
definition.

The special form for term/definition pairs looks as follows:

Biloba has special forms for many common text elements in order to give them
additional meaning.

Another special form is used for quotes:

Here the left part must be enclosed in quotation marks, otherwise the parser will
identify the quote as a very long term that needs to be defined.

Using the special forms we can now re-structure the example from the previous
section as follows:

In terms of structure, the result is quite different from the first example. We
only have one section instead of three and instead of simple paragraphs we have
logically distinct text elements:

Figure 2.7: Source: A Quotation
"The limits of language are

the limits of one’s world." --Ludwig von Wittgenstein

10

Figure 2.8: Rendered: A Quotation

Figure 2.9: Source: Nested Sections Restructured Using Special Forms
Language

"The limits of language are

the limits of one’s world." --Ludwig von Wittgenstein

Let’s have a closer look at language.

Syntax -- structure of valid sentences in a language.

Semantics -- meaning of a syntactically correct sentence.

Pragmatics -- meaning of a sentence put into the ...

Figure 2.10: Rendered: Nested Sections Restructured Using Special Forms

11

Figure 2.11: Source: An Itemized List
- item

- item that spans more

than one line

- item

Figure 2.12: Rendered: An Itemized List

• a quote,

• a paragraph, and

• three term/definition pairs

You should try to use the special forms whenever possible to implicitly add this
information to your document which otherwise would be lost. It helps to make
your documents more accessible to your audience.

2.4 Lists

There a two kinds of lists in Biloba:

• itemized or bullet lists (such as this one), and

• numbered lists

An item of a bullet list is introduced by a ”- ” sequence in front of it.

As we can see in the example, list items are allowed to span multiple lines as long
as the lines are well aligned with another.

Numbered list items are introduced by a ”1) ” sequence in front of them.

An empty line ends a list. Consequently, these are two lists, though the author
might have intended otherwise:

12

Figure 2.13: Source: A Numbered List
1) item number one

2) item number two

3) and finally, item number three

Figure 2.14: Rendered: A Numbered List

Figure 2.15: Source: Two Lists
1) item number one

2) item number two

3) and finally, item number three

Figure 2.16: Rendered: Two Lists

13

Figure 2.17: Source: Inline Formatting
/emphasis/

stronger emphasis

’’sample text’’

~text that needs correction~

text that replaces corrected text

Figure 2.18: Rendered: Inline Formatting

2.5 Inline Formatting

Inline formatting is sometimes added to emphasize words that need to be set off
from the rest of the sentence. Do not overuse this feature, otherwise the whole
effect of emphasis gets lost in chaos.

This is how it is done in Biloba:

Sample text is used to mark something as an example or to signal that this text
has to be typed in or is the output of a program.

Text that needs correction and the accompanying text that replaces corrected text
are used to denote that something was faulty and should be corrected accordingly.

Figure 2.19: Source: Hyperlinks
[http://www.google.com]

[search google>>http://www.google.com]

14

Figure 2.20: Rendered: Hyperlinks

Figure 2.21: Source: A Horizontal Rule

Text between square brackets is used to create hyperlinks. The text between is
interpreted as the target. Optionally you may add text to a link as illustrated in
the last row of the example. The given text will be turned into a link to the given
location. If no text is given, the location itself is displayed as link text.

A line that only consist of dashes will be rendered as a horizontal separator.

2.6 Adding Images

Adding images to a document is done with

where the first line represents the caption of the image. The line without the hash
sign ‘#’ in front gives the path to the image. The ‘#type:image’ line is required
so that Biloba knows it should render this figure as an image.

Note that these lines must be indented by two spaces relative to the current level.
If the line immediately before this indented text element was a single line, it would
be converted into a caption and these lines were interpreted as normal text in a
paragraph. Therefore it is essential to ensure that text elements immediately
before an image consist of at least two lines. If splitting the line to span two lines
is not an option you can add a single ‘.’ character as the only character to be
found in the second line. The ‘.’ will not produce any output but ensures that
Biloba does not turn the line before into a caption.

Here is an example:

Without the guiding dot, ”Consider these leaves” would become a caption for
obvious reasons.

Figure 2.22: Rendered: A Horizontal Rule

15

Figure 2.23: Source: Adding an Image
#Image of Ginkgo Leaves (Tamara Crupi, September 1996)

#type:image

../biloba.jpg

Figure 2.24: Rendered: Adding an Image

Figure 2.25: Source: Preventing a Caption
Consider these leaves:

.

#Image of Ginkgo Leaves (Tamara Crupi, September 1996)

#type:image

../biloba.jpg

16

Figure 2.26: Rendered: Preventing a Caption

2.7 Adding Example Text

You can make Biloba retain text just as you entered it and have it copied into a
figure. No further formatting is applied to this text element.

This is achieved in the same way as we did with images, except that you must
omit the ‘#type:image’ line.

The first line not starting with a hash sign ‘#’ indicates the beginning of text that
should be preserved. It extends until the next line with ”normal” indentation.

This is particularly useful when describing external data such as program listings
or printouts.

2.8 Further Reading

We have now seen all of Biloba’s forms required to create documents. Look at the
source of the documents part of the test harness for additional examples. Learning
from examples can be very effective.

17

Figure 2.27: A Simple C Program
#include <stdio.h>

#define S "Hello, World\n"

int main(int argc, char **argv)

{

exit(printf(S) == strlen(S) ? 0 : 1);

}

Figure 2.28: Rendered: Adding a Program Listing

18

If you still have questions you should have a look at the Expert’s Guide to Biloba
which covers features you would not require for everyday use.

19

APPENDIX D

BILOBA STX – EXPERT’S GUIDE

75

Biloba STX
Expert’s Guide

Version 1.0
17-Apr-2004

Contents

1 Introduction 4
1.1 About This Document . 4

2 Setup 5
2.1 Web Server Installation . 5
2.2 Stand-alone Installation . 6
2.3 Using the Command Line Interface 7

3 Development 9
3.1 Writing Extension Modules . 9

3.1.1 What are Figure Modules? 9
3.1.2 Parameters . 9
3.1.3 A simple Figure Module . 10

4 Expert Formatting Commands 13
4.1 Escaping . 13
4.2 Empty Paragraph . 13
4.3 Comments . 14
4.4 Preserving Input . 14

2

List of Figures

2.1 Enable .r Files as CGI Scripts . 6
2.2 Directory Entry That Enables the Execution of CGI Scripts 6
2.3 Shebang line for biloba.r . 6
2.4 change-dir Path For stxify.r . 7
2.5 Command Line Switches for stxify.r 8

3.1 A Sample Figure . 10
3.2 Document That Uses the TRANSFORM Figure 10
3.3 Source Code for the TRANSFORM Figure Module 11

4.1 Escaping: Use Backslash to Prevent Colon From Becoming a De-
limiter . 13

4.2 Two Adjacent Figures . 14

3

Chapter 1

Introduction

1.1 About This Document

This is the Expert’s Guide to the Biloba document formatting system. It ex-
plains the setup process, program internals and how to write extension modules
for the Biloba document formatting system. Formatting commands the average
user does not require most of the time are also covered. For a general introduction
to document formatting using Biloba, please refer to the User’s Guide.

Biloba is a non-interactive document formatting system specifically designed for
documents on the Web. It was developed as a project completed as part of the
requirements for the BSc. (Hons) Computer Studies by Viktor C. Pavlu under the
supervision of Carlton McDonald at the University of Derby in the years 2003-
2004.

4

Chapter 2

Setup

2.1 Web Server Installation

This section assists you with setting up Biloba in combination with the Apache
HTTP Server. It assumes no prior knowledge of the Apache HTTP Server, how-
ever the information on Apache’s ‘httpd.conf’ configuration file presented here
is limited to the minimum required for Biloba. This guide is not intended as re-
placement for the extensive documentation available on the Apache HTTP Server
which is highly recommended before deploying the Web server in a production en-
vironment. The documentation is available at http://httpd.apache.org/docs/.
Note that it is discouraged to use the Biloba prototype in a production environ-
ment, as it can not be guaranteed to be safe. For example, Biloba does not check
that the requested documents are located within the DocumentRoot — all files
readable to Biloba can be accessed through the HTTP server by clever use of the
query string. Making the program source available via the HTTP server is also
considered to be harmful due to security concerns! Later releases will fix this.

First you have to download and install the Apache HTTP Server which is avail-
able at http://httpd.apache.org/download.cgi. You will also require an inter-
preter for the REBOL programming language which is available at http://www.
rebol.com/platforms.shtml. Installation files for a Microsoft Windows environ-
ment can also be found on the accompanying CD in the directory ‘w32setup/’.

Install the HTTP server using the setup program. Then add the following entries
to your ‘httpd.conf’ located in ‘conf/’ inside your Apache installation directory.
Search for the ‘AddHandler’ directive and add the extension ‘.r’ for REBOL files.
This will enable ‘.r’ files as CGI scripts (see Fig. 2.1).

Then add the following lines to your configuration (see Fig. 2.2) to enable the
execution of CGI scripts in the directory ‘biloba/’ within your document root.
The document root is the directory from which the server obtains the documents

5

Figure 2.1: Enable .r Files as CGI Scripts
AddHandler cgi-script .cgi .r

Figure 2.2: Directory Entry That Enables the Execution of CGI Scripts
<Directory "YOURDOCROOTHERE/biloba">

Options ExecCGI

AllowOverride None

Order allow,deny

Allow from all

</Directory>

the clients request. By default it is located in the directory ‘htdocs/’ within your
Apache installation, but can be changed to any directory you like. Replace the
text ‘YOURDOCROOTHERE’ with your actual path to your document root which is
specified by the configuration entry ‘DocumentRoot’ followed by the path.

The next step is to setup REBOL. Just copy the file ‘rebol031.exe’ to a directory
on your local disk. Usually this will be ‘C:/rebol/’.

The next step is to copy the Biloba files to their destination. The directory
‘w32setup/biloba/’ on the accompanying CD contains all required files. These
must be copied to the directory you specified as DocumentRoot in the ‘httpd.conf’
file. The location of the ‘biloba.r’ file should be ‘YOURDOCROOTHERE/biloba/biloba.r’.

Edit ‘biloba.r’ so that the very first line contains the location of the REBOL
interpreter. Figure 2.3 illustrates how this line must look like in order to be
interpreted by the Apache HTTP Server.

The setup is now complete — Start the Apache HTTP Server and visit http:

//localhost/biloba/biloba.r?test.stx with your browser!

2.2 Stand-alone Installation

This section explains how to setup Biloba to be used off-line. The only things
you require are an interpreter for the REBOL programming language and the
Biloba program files. Both are located in ‘w32setup/’ on the accompanying CD.

Figure 2.3: Shebang line for biloba.r
#!c:/rebol/rebol031.exe -cs

6

Figure 2.4: change-dir Path For stxify.r
;change this to the directory where

;%stxify.r is located

change-dir %/C/Program%20Files/biloba/

Should you require a REBOL interpreter for a non-Windows platform, you have
to download if from http://www.rebol.com/platforms.shtml.

First, copy the REBOL interpreter to a directory of your choice on your local disk.
Usually this will be ‘C:/rebol/’.

The next step is to copy the Biloba directory (‘w32setup/biloba/’) to a place on
your local disk. Associate ‘.r’ files with the REBOL interpreter by double click-
ing on ‘stxify.r’ and selecting the REBOL binary from the list, if the REBOL
installation has not already done the association for you.

The Biloba prototype requires you to edit the file ‘stxify.r’. At the beginning
of the file you will find a line starting with ‘change-dir’ followed by a path
introduced with the percent sign. Change the path after the percent sign to the
path in which ‘stxify.r’ is located. Note that this path must use forward slashes,
must end with a slash, and must be an absolute path starting at the root. Also
note that blanks need to be encoded as ‘%20’. For a typical installation this line
is shown in Figure 2.4.

Optionally you can assign the extension ‘.stx’ with Biloba’s command line inter-
face ‘stxify.r’. To do this double click on ‘welcome.stx’ and select ‘stxify.r’
to be the default application for ‘.stx’ files.

2.3 Using the Command Line Interface

Biloba can be used from the command line to prepare files offline in various
formats. Figure 2.5 shows the command line switches that can be used with
‘stxify.r’.

If no output format is specified, you will be asked to enter one. Available output
formats are debug, xml, html, and tex.

If no source files are specified, you will be asked to enter one.

A file with the same name as the input file but the extension changed to the name
of the output format. Note that previous existing files with that name will be
overwritten without prior warning!

7

Figure 2.5: Command Line Switches for stxify.r
Usage: stxify.r [options] file...

Options:

-h Display this information

-o <format> Specify output format of following input files

Permissible formats are: debug, xml, html, tex

Examples:

stxify.r -o xml fileA.stx fileB.stx

8

Chapter 3

Development

3.1 Writing Extension Modules

The figure mechanism in Biloba is designed to be easily extensible. New syntax
rules for figures can be added to the system just by adding modules that adhere
to the rules outlined in this section.

3.1.1 What are Figure Modules?

Whenever a line in a document is spontaneously indented, that is indented without
a prior heading, the line and all following lines with the same level of indentation
or more will be extracted from the document and rendered as figure.

The most basic type of figure is a verbatim area. Everything entered will appear
exactly as typed in the source. Physical line breaks as well as blanks are preserved
— no formatting is applied.

This is the default figure type. Every figure without an explicit type parameter
will be treated as verbatim area.

3.1.2 Parameters

If the first lines of a figure are introduced with a hash sign (#), they have a special
meaning.

A line with only a hash sign and some text after it will be treated as the figure’s
title. If the text after the hash sign contains a colon (‘:’), the line is treated as
key/value pair with the key as the left side and the value the right side of the

9

Figure 3.1: A Sample Figure
#This is the title

#type:image

path/to/image.jpg

Figure 3.2: Document That Uses the TRANSFORM Figure
#Text converted to UPPERCASE

#type:transform

#case:uppercase

This TEXT will be

tRaNsFoRmEd to

UPPERCASE characters,

however useful this

may be ...

colon.

One such key, type, has a pre-defined meaning: it specifies the figure module that
is called to process the parameters and the figure text.

All other key/value pairs have no pre-defined meaning but can be assigned one by
developers of a figure module.

Figure 3.1 shows an example of a figure. The figure text will be parsed by the
module ‘image’ located in the directory ‘modules/’. This is the module that
inserts images in your document.

3.1.3 A simple Figure Module

We will now create simple figure module called TRANSFORM. It takes the figure
text and transforms all characters to lowercase. This behaviour can be influenced
with the parameter ‘case’, which allows the values ‘lowercase’, ‘uppercase’, and
‘preserve’. A typical invocation of this figure module can be seen in Figure 3.2.

While this figure module is not particularly useful, it illustrates all the concepts
required for creating a figure module.

In order to add a figure module, you have to create a file with the name of the
module. In our case, we create a file called transform with no extension and put
it into the directory ‘modules/’ where all figure modules must be located.

Figure modules are incepted as functions in the REBOL programming language.
The function has to accept two arguments

10

Figure 3.3: Source Code for the TRANSFORM Figure Module
func [headers lines /local transformed-string][

;create a string that contains the first line

transformed-string: copy lines/1

;so we can easily append the other lines after

;inserting a newline character

lines: next lines ;skip first, already added, line

forall lines [

insert tail transformed-string newline ;insert newline

insert tail transformed-string lines/1 ;insert the line

]

either find headers "case:uppercase" [

;transform to uppercase

uppercase transformed-string

][

if not find headers "case:preserve" [

;transform to lowercase

lowercase transformed-string

]

]

;return a valid document node [’node-type ["node’s content"]]

reduce [’verbatim reduce [transformed-string]]

]

• a block containing all headers, and

• a block containing the lines

Figure 3.3 shows the source code of the TRANSFORM figure module. The
first line starts the function definition with the first block containing the pa-
rameters ‘headers’ and ‘lines’. These are the words through which the two
blocks will be passed. The ‘/local’ string is called a refinement. It specifies that
‘transformed-string’ is a local variable.

‘either find headers "case:uppercase"’ tests if ‘"case:uppercase"’ was passed
as header. If so, the function transforms the text to uppercase characters using
the REBOL function ‘uppercase’.

Finally the function has to return a valid document node which consists of a
document node identifier and a block of further nodes and strings that make up
the node’s content. These values are enclosed in a REBOL block.

11

To create more sophisticated modules, you need to have a background in the
REBOL programming language. The REBOL Reference Manual is available online
at http://www.rebol.com/users/valurl.html.

Adding an Output Writer

12

Chapter 4

Expert Formatting Commands

4.1 Escaping

Sometimes you want to prevent Biloba from interpreting characters and have them
preserved just as they are. A frequent example is the use of a colon (:) inside a
figure caption. Naively writing the colon inside the caption will turn the caption
into a key/value pair.

Fortunately there is a mechanism to prevent this. By adding a backslash in front
of any character, the character will appear exactly the same way in the output.
This can be used to prevent the colon from becoming a key/value pair delimiter.
Figure 4.1 shows an example.

Note that this can be applied to any character you feel necessary.

4.2 Empty Paragraph

The empty paragraph, a single period as the only character in a line, can be used
to directly influence the current level of indentation without the need for text.

This is especially useful if you want to have a figure immediately following another
figure. Without the empty paragraph the second figure would not be detected as
a second figure but the will be joined to a single, larger figure. Without the empty

Figure 4.1: Escaping: Use Backslash to Prevent Colon From Becoming a Delimiter
#Escaping: Use Backslash to Prevent Colon From Becoming a Delimiter

...

13

Figure 4.2: Two Adjacent Figures
#Image 1

#type:image

image1.jpg

.

#Image 2

#type:image

image2.jpg

paragraph you would have to add some text between the figures for clarity, which
is sometimes not an option.

An example (see Fig. 4.2) will clarify this.

4.3 Comments

Comments are used to prevent Biloba from parsing a single line or a group of lines.

Lines starting with a hash sign (‘#’)in the very first column will be ignored.

To ignore a block of lines, enclose the lines between ‘#=ignore’ and ‘#=end’, both
of which must appear on a line of its own and the hash sign needs to be in the
very first column.

4.4 Preserving Input

Text between ‘#=preserve’ and ‘#=end’ will be transferred 1:1 to the output
document.

Note that this feature limits the output format independence. Text inside a pre-
serve block can violate rules in the output format. Biloba can no longer ensure
that the created markup conforms the the rules of the output format.

Use this only if you know the document will not be transformed into other formats
than the one you wrote the preserve blocks for.

14

APPENDIX E

BILOBA STX – PARSER RULES

90

Biloba STX
Parser Rules

Version 1.0
7-Apr-2004

Contents

1 Introduction 3
1.1 About this Document . 3
1.2 Goal of Rules . 3

2 Structured Text Parser Rules 4
2.1 Structural Rules . 4

2.1.1 Paragraphs . 4
2.1.2 Captions . 4
2.1.3 Figures . 5
2.1.4 Term and Definition . 5
2.1.5 Quotes . 6
2.1.6 Lists . 6
2.1.7 Horizontal Delimiters . 7

2.2 Inline Rules . 8
2.2.1 Linking to other Documents 8

2.3 Processing Instructions . 8
2.3.1 Comments . 8
2.3.2 Pass-through . 9
2.3.3 Pseudo-Paragraph . 9
2.3.4 Escaping . 9

2.4 Rules Not Implemented in the Prototype 9
2.4.1 Footnotes . 9
2.4.2 Abbreviations . 10
2.4.3 Special Symbols . 10
2.4.4 Tables . 10
2.4.5 Referencing . 10

2

Chapter 1

Introduction

1.1 About this Document

This is a summary of formatting rules for Structured Text that were defined as
part of the Final Year Project entitled Document Formatting Systems completed
as part of the requirements for the BSc. (Hons) Computer Studies by Viktor C.
Pavlu in the years 2003-2004. This document is also available on the CD that
accompanies the project report.

Biloba implements most of these rules. Future extensions to Biloba should be
implemented according to this document to retain a consistent source format and
consistent formatting across different versions of the parser and other Structured
Text parsers.

The syntax is made to be as intuitive as possible, however intuitive does not mean
lax. There is a small set of strict rules that need to be obeyed when creating
a structured document. This document describes these rules from a developer’s
point of view. For a user’s point of view, please consult the User’s Guide and
Expert’s Guide.

1.2 Goal of Rules

The rules must be intuitive, consistent, easy to remember and unambiguous while
at the same time explicit markup should be avoided where possible. Users must
be able to create a simple document right away without reading a manual.

3

Chapter 2

Structured Text Parser Rules

2.1 Structural Rules

The basic unit of text in Biloba is the line. A line is a sequence of characters
terminated with CRLF (carriage return, line feed; hexadecimal: ‘0D 0A’), CR or
LF (depending on operating system used) or terminated by EOF.

A line that consists of only whitespace and the delimiter is an empty or blank line.

Non-empty lines have a certain level of indentation, that is the number of blanks
between the start of the line and the first non-whitespace character. Tab characters
account for two blanks (this can be configured with the ‘tab-size’ variable in
%main.r).

An empty line or a change in indentation delimit blocks of text. The various block
elements are described below.

2.1.1 Paragraphs

Multiple non-empty lines that share the same indentation level are joined to form
one paragraph.

An empty line separates paragraphs.

2.1.2 Captions

A caption is a single line followed by one or more lines that are more indented.

4

Then the lower level and all following text elements on the same level form the
body of the section in the document and the caption line serves as section heading.

Two lines followed by text on a lower level are not captions, rather the text is
”spontaneously indented”.

2.1.3 Figures

Text that is spontaneously indented, a line of text that starts with two blanks
without a caption immediately before, is regarded as a figure.

Figure text is usually retained the way it was typed in and will be rendered using
a non-proportional font so that the ‘i’ and the ‘X’ character have the same width.
Whitespace is also preserved. These properties make figure test ideal for code
samples or other examples within a technical document.

The layout of a figure depends on the type of the figure. By default no further
processing is performed but by adding a figure header of the form ‘#mode:image’,
the figure text is interpreted by the image figure module. The image module
interprets the figure text as reference to an image and inserts the image as figure.

A programmer can add figure modules to the system by writing a REBOL function
with two parameters, headers and lines. The function processes the figure text
contained in lines and the optional figure headers contained in headers to create
a document node that represents the figure in the document tree. This function
must be saved in the directory %modules/ under a filename which will be the
name of the module. For details see the image module in ‘modules/image’.

By adding a figure header of the form ‘#An Example’, the figure will be given the
caption ”An Example”. All figures are numbered automatically as well.

In addition to the ‘#mode:’ header any header of the general form ‘#key:value’
can be added to the top of a figure. These key/value pairs are the way passing
parameters to the figure modules (via headers).

2.1.4 Term and Definition

Inside a line1, two dashes ‘--’ are used to separate a term and its definition.

If the user wanted a hyphen instead of the terminus/definition pair, three dashes
are required.

1In the current version of Biloba term/definition pairs are not allowed to span multiple lines.

5

2.1.5 Quotes

A paragraph enclosed in double quotation marks followed by two dashes and a
name is rendered as a quote. The quoted text is the actual quote and the text
after the dashes refers to the person that is quoted.

2.1.6 Lists

There are two kinds of lists in Biloba:

• itemized lists (unordered, ”bulleted”)

• enumerated lists (ordered, ”numbered”)

Lists are a group of paragraphs introduced with either a bullet or a number indi-
cating the type of list. Every element in a list may span multiple lines and lists
can be nested. An empty line delimits a list.

In list items spanning multiple lines, the subsequent lines must be aligned with
the text rather than the bullet token.

As users sometimes intuitively indent lists to separate them from the rest of the
text without the intention to create a new sub block, this manner is accounted for
in Biloba and spontaneously indented lists are treated as if they were not indented.

The result is improved usability in most of the cases where lists are used, however
it also introduces ambiguity if a list is the first element after a caption:

Multiple lines of text followed by an indented list are parsed as a paragraph fol-
lowed by a list on the same level.

A single line of text followed by an indented list is parsed as a line followed by a
list on the same level. This is what one would expect. However this clashes with
the definition of a caption ”...a single line followed by one or more lines that are
more indented”.

Therefore lists are not allowed to be the very first element after a caption if the
caption is followed by an empty line unless the list is spontaneously indented in
respect to the level of the sub block introduced by the caption (or double indented
in other words).

If there is no blank line between the list and the caption, normal indentation is
enough to discern the list in a sub block from a list indented for better readability
only. The underlying assumption is that if accentuating the list was the only
motivation for indentation, the user also would have added a blank line to bring

6

the list out more clearly — otherwise the list was indented on purpose yielding a
caption and a list in a sub block.

Itemized Lists

Itemized lists are used to group text elements into a concise presentation where
the elements do not appear in specific order.

The following tokens can be used to indicate an element of an itemized
list:

• ‘o text’

• ‘- text’

• ‘* text’

• ‘*) text’

Ordered Lists

Ordered lists are similar to itemized lists but their elements’ order plays a role to
the meaning of the text. Therefore the elements are usually numbered.

The following tokens can be used to indicate an element of an ordered
list:

• ‘1. text’

• ‘1, text’

• ‘1) text’

Instead of ‘1’ any number can be used, however the actual numbering is done
automatically by Biloba to allow easy re-ordering of elements.

2.1.7 Horizontal Delimiters

A line that consists of (at least 3) dashes only is regarded as a horizontal delimiter.
Either a horizontal rule will be inserted or the text flow continues on the next page
or there is a reasonable pause before the rest of the text is to be read out, depending
entirely on the output media.

7

2.2 Inline Rules

All elements discussed so far were ”structural” elements. They started a new block
or represented a part of an existing block.

Inline formatting is done within the structural elements. Simple symbols inside the
text are used to indicate the desired type of the text enclosed by the symbols. As
the format of Biloba is declarative throughout, the actual rendered output depends
on the output writer, however these symbols are commonly used in newsgroups to
apply a certain type of emphasis to words:

strong text enclosed in asterisks will be typeset to bring it out stronger than
other text

keyboard text enclosed in a pair of two single quotes is displayed as if typed in
by the user

emphasized text enclosed in slashes will be emphasized

deleted text enclosed in tilde characters is used to denote something has been
deleted

underlined text enclosed in underscore characters will be rendered underlined

2.2.1 Linking to other Documents

Hyperlinks to other documents are written as ‘[label>>target]’ where label is
the text that will be displayed and target is the resource that can be reached when
following this link.

2.3 Processing Instructions

This section describes processing instructions to the parser. This is the only form
of explicit markup in Biloba and will not be required for most uses.

2.3.1 Comments

Lines with a hash sign ‘#’ as their very first character will be ignored by the parser.
This can be used to add instructions targeted to your editor for example.

Text between the lines ‘#ignore’ and ‘#end’ is ignored entirely.

8

2.3.2 Pass-through

Text between the lines ‘#preserve’ and ‘#end’ is verbatim copied to the output
writer encapsulated in a preserve node. No further processing is applied to these
sections.

Pass-through sections can be used to directly manipulate the physical output of
a document. For example it is perfectly valid to add TEX commands to typeset
mathematical formulae in such a section. However if the document is then to be
rendered in a format other than TEX, the TEX commands will not be interpreted
but rather appear in the output as they were typed. Therefore note must be taken
that this sacrifices the content/representation independence to a certain amount,
nevertheless it is sometimes a powerful feature.

2.3.3 Pseudo-Paragraph

A line that consists of a single period ‘.’ only will produce no output. It is solely
there to circumvent ambiguities in indentation, for example after a list.

2.3.4 Escaping

The characters and their influences on the parser were outline in this document.
Sometimes, however it is desired to have a hash sign ‘#’ as the first character in a
line without having the line ignored by the parser, or to have square brackets ‘[]’
in a paragraph and not having them replaced with a hyperlink.

Adding a backslash character ‘\’ in front of any character preserves the character
as it is. The escaped character is not interpreted as formatting symbol of any
kind. The backslash character itself can be added to a document by writing ‘\\’.

2.4 Rules Not Implemented in the Prototype

All rules this far were implemented and tested in the prototype of Biloba. The
following rules act as a starting point for further work.

2.4.1 Footnotes

Adding footnotes to inline tokens while typing is done by appending ‘^(footnote-text)’
to the word where the footnote should be added. The text between the parenthe-

9

ses will be displayed where the output writer deems it appropriate, usually on the
bottom of the current page.

2.4.2 Abbreviations

The first time an abbreviation appears in the text it should be written out in
parentheses. If the parser finds an abbreviation followed by text enclosed in double
parentheses, the abbreviation and the spelled-out form from within the parentheses
will be added to an internal synonym database.

Every time the abbreviation is used, the spelled-out form can be added by the
output writer automatically, if desired.

The synonym database is intended to be created on the fly for each document
alone, but it is also possible to have one central synonym database multiple authors
are sharing.

2.4.3 Special Symbols

Special characters normally not available on a standard keyboard could be added
via escape sequences. Mathematical operators, greek letters and Umlaute, . . . are
examples of this type of text.

2.4.4 Tables

Tables are not part of the Biloba rules but should be implemented by means of
figure modules instead.

2.4.5 Referencing

Adding references to inline tokens while typing is done by appending ‘^[ref-id]’
to the word where the reference should be added. Ref-id is an unique identifier
of the source being referenced which Biloba looks up in a BibTEX database. Ref-
erenced entries will automatically be added to the bibliography at the end of the
document.

10

APPENDIX F

PROJECT SUPPORTING TASKS

F.1 Regression Tests

In order to continuously verify the parser still behaves as expected as new features
are added, the author wrote unit tests for all features as they were added. Every
unit test represents a document element that has to be detected and transformed
into its internal representation by the parser.

The unit tests consist of a file with the input to the parser and a file containing the
expected parse tree. A REBOL script compares all created parse trees with their
corresponding expected output and reports where differences occur. If adding a
parse rule for paragraphs breaks all tests for lists, the regression tests give a clear
hint where the programmer has to search for errors. Figures F.1 and F.2 show
output from the test environment where tests failed (F.1) and where all tests were
successfully passed (F.2).

The test environment can be found in the directory ‘test_harness/biloba/tests/’
on the accompanying CD.

For more information about unit tests, please visit http://www.xprogramming.

com/ or refer to Kent Beck’s Original Testing Framework Paper available at http:
//www.xprogramming.com/testfram.htm.

F.2 Estimation And Time Management

All tasks performed during the course of this project were recorded using a simple
tool that logged start- and stop times as well as task descriptions. This data was
used to continually assess the time spent on individual tasks and taskgroups in
order to adhere to the project plan.

Further it is used to increase the accuracy of future estimations based on the
additional data. This was also done for this project’s estimation, based on data
gathered in earlier projects the author participated.

101

http://www.xprogramming.com/
http://www.xprogramming.com/
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

Figure F.1. Test Tool Sample Screen with Failed Tests

102

Figure F.2. Test Tool Sample Screen with all Tests Passed

103

Figure F.3. Sample Data as recorded by the Logging Tool

<entry>

<start>28-Sep-2003/16:22:53+1:00</start>

<duration>0:00:19</duration>

<phase>Project accompanying tasks</phase>

<task>test logger</task>

</entry>

Figure F.3 shows sample data gathered by the recorder.

104

APPENDIX G

PROJECT OVERVIEW PLANS

105

Figure 1: Original Project Gantt-Diagram

Figure 2: Updated Project Gantt-Diagram

APPENDIX H

PROJECT PROPOSAL

108

School of Computing & Technology
University of Derby

Computing Scheme - Final Year Project Proposal

Name: Viktor PAVLU
Project Title: Document Formatting Systems

Main Supervisor: Carlton McDonald
Second Supervisor: Dr. Zaigham Mahmood

Does this project meet the BCS Accreditation requirements?
Please include any constraints.

Aims and Objectives of Project:

- Conduct background research on the topic of Document Formatting (DF)

- Give overview of existing systems and their historical development

- Evaluate ways of implementing a prototypical DF System for the Web

- Clearly formulate the possible value of a DF System for the Web

- Implement a prototypical DF system

- Critically review the prototype

Expected Outcomes or Deliverables:

- Project Report

- Prototypical DF toolkit

Methodology:

- Literature review of published papers on this subject

- Inspect existing systems (especially Tex, LaTex and Zope STX)

- Study techniques of implementing a web-based DF system and choose one

for the prototype (data format, e.g. markup; environment, e.g. Apache

Module, standalone or scripted)

- Project development work to implement prototype

Hardware and Software Requirements (these MUST be available before the project
starts):

Signature: Date:

Supervisor’s Signature: Date:
(If you sign here, you are AGREEING to manage this student’s project)

APPENDIX I

PROGRESS REPORTS

110

The following progress reports were given out by the supervisor at the regular
project meetings. They summarize what was done by the student, problems that
were encountered and how they could possibly be solved. Also, they provide space
for the supervisor to comment on the student’s performance.

The progress reports prepared by the student as agenda for the meetings can be
found on the accompanying CD in the directory ‘docs/progress_small/’.

111

Figure I.1. Progress Report: October 10, 2003

112

Figure I.2. Progress Report: October 22, 2003

113

Figure I.3. Progress Report: November 13, 2003

114

Figure I.4. Progress Report: December 3, 2003

115

Figure I.5. Progress Report: February 4, 2004

116

Figure I.6. Progress Report: February 24, 2004

117

Figure I.7. Progress Report: March 10, 2004

118

APPENDIX J

INTERIM REPORT

The interim report was handed in on December 3, 2003. The following version
is the report without the appendices. The appendices were removed to avoid
duplication as the appendices of the interim report are available as appendices of
the final report as well.

119

UNIVERSITY OF DERBY
Derbyshire Business School

Final Year Project Interim Report
as part of the

requirements for the

BSc (Hons) Computer Studies

entitled

Document Formatting Systems
by

Viktor C. Pavlu

in the years 2003 – 2004

Supervising Tutor: Carlton McDonald

Abstract

The Interim Report is part of the Final Year Project. It is intended
to give you an introduction to the project and an overview of the progress
being made so far. You will also find an updated version of the project
proposal and a project overview diagram in the appendices. Approximately
1000 words.

Contents

Contents 2

List of Figures 3

1 Introduction 4

2 Project Background 4

3 Objectives and Achievements 5

4 Changes to Original Proposal 6

5 Further Plan 6

References 7

A Original FYP Proposal 9

B Updated FYP Proposal 11

C Original Project Plan 13

D Updated Project Plan 13

E DF Prototype Architecture 13

List of Figures

1 Original Project Gantt-Diagram . 14

2 Updated Project Gantt-Diagram 15

3 Locial Architecture of BilobaSTX, the prototypical DF system . . . 16

3

1 Introduction

My project is to get knowledge of existing document formatting (DF) systems,
their history and the techniques they use, in order to be able to implement a
prototypical DF system for the web that combines the advantages of existing
systems. The purpose of this DF system is the creation of technical documentation
with a focus towards online publishing. The DF system prototype does not deal
with the actual typesetting, creation of fonts, handling of multiple users trying to
concurrently edit a document, versioning of documents or security concerns.

This report summarizes the background of the Final Year Project “Document
Formatting Systems” (Sect. 2), describes its current status (Sect. 3), changes to
the original proposal (Sect. 4) and future perspectives (Sect. 5) of the project in
brief detail.

2 Project Background

Document formatting is the process of mapping information to layout. Since
its beginnings in 1961, the use of computerized document formatting systems
has steadily increased. Today it is one of the most widespread applications of
computers.

There are two approaches towards formatting a document: the first and today
the more popular one (as it seems) is to use a graphical editor to apply physical
formatting to a document. The second approach is to manually insert logical
formatting instructions into a document.

While the latter way seems obsolete and tedious, it has many advantages over a
WYSIWYG application: By using generic or logical formatting (‘format this as a
level 1 heading”) instead of using physical formatting (“make this bold and 14pt
in size”), a logical structure is given to the document. Changing the appearance
of all headings is very easy in a generic coded document, whereas in a document
with physical formatting, inconsistent layout could result.

This project gives an overview of the historical development of important docu-
ment formatting systems, studies and reviews the most important approaches to
document formatting, points out the problems they pose and discusses current
publications that try to find solutions, with a focus on non-interactive document
formatting systems.

For classic publishing there exists a wide range of sophisticated DF systems (troff,
SCRIBE, TEX, lout), for online publishing, however, there are no such well-
established systems. Creating the markup by hand seems the only promising
way to create consistent, standards-compliant and irreducible XTHML.

4

Biloba STX, a small-scale document formatting system prototype, is going to be
developed in order to gain first-hand experience of the practical aspects of imple-
menting and deploying a web-based document formatting system that supports
generic coding.

The outcomes of this project are a thorough overview of DF systems and their
historical development, and a DF system prototype developed with a focus on
online publishing that tries to infer the appropriate formatting from the spacing
and contents of the plain text source. The output format is generic coded markup
for in-browser display or further processing (XTHML, DocBook).

There will also be recommendations for further development of the DF prototype.

3 Objectives and Achievements

To get a better understanding of the problems involved in implementing a DF
system I had to research not only on papers published in this field of research but
I also had to inspect DF systems currently in use.

In my original project proposal I planned to study the algorithms and data struc-
tures used in DF systems by reviewing the source code, where available. This
turned out to be inappropriate as those systems are mainly concerned with type-
setting and graphical positioning of objects on a page. These are tasks the DF
system for the web leaves to the browser. The proposal was changed accordingly.

I did research into the field of well-established file formats used in combination
with DF systems and compared them towards their suitability as output format
for the DF prototype. Formats under consideration were PostScript, PDF, HTML,
M-XML, XHTML, DocBook, DVI and a author-defined XML dialect. I decided
to use the W3C recommendations for XHTML in combination with Cascading
Style-sheets for displaying and the DocBook standard as output format for further
processing.

The report summarizes the history of DF systems starting with runoff in 1961 up
to current papers about what their authors think to be the future of DF systems.

A first draft of parsing rules the DF system is going to incorporate was created and
the development environment to be used for the prototype was evaluated. The
decision was made in favor of the REBOL programming language in combination
with CGI and against an Apache 2.0 module written in C++ for reasons involving
compatibility with other webservers, built-in support of parsing functions, and
speed of prototyping cycle.

During the research — which is not completed yet — I found out that there
is at least one DF system that follows the same ideas that I want to imple-

5

ment. “NOTECH: Typesetting without Formatting”, a paper published in 1990 at
Princeton University, describes the ideas of inferring appropriate formatting from
spacing and contents of the document. Unfortunately I was not able to get a copy
of the paper (currently I am waiting for a reply from the University of Princeton).
Another System, Zope STX, developed as part of the Zope project follows this
approach, too. Both systems are going to play a major role in the remaining part
of the research phase and during the critical review of the prototype as well.

4 Changes to Original Proposal

The title of the project had to be changed from “Text Formatting Systems” to
the more appropriate title “Document Formatting Systems” as the systems being
observed and the prototype being implemented are not only concerned with the
layout of text, but all elements that constitute to a document (tables, figures,
mathematical formulae, images, . . .)

Algorithms and data formats used in existing DF systems play a minor role in the
development of the DF prototype as these systems try to meet different needs.
The proposal was changed to reflect this. See section 3 for details.

Both the original and the updated project proposal can be found in the appendices.

5 Further Plan

Up to now the project plan was followed accurately and everthing was completed
in time. However, I am afraid that this is going to change in the next few weeks
when the literature review was planned to be completed. This will most likely
take more time than originally assessed as I underestimated the number of DF
systems involved in the historical development of today’s important DF systems.
I also underestimated the size and range of influential papers published in this
field.

Therefore I will most likely have to continue work during the winter holidays
in order to keep up with the planned progress. This is not going to delay the
completion of the project as the holidays were not part of the original estimation
and I have arranged an extra buffer of three weeks at the very end of the project
to handle such difficulties.

An overview project plan can be found in the appendix.

6

References

Adobe Systems, I., ed. (1999), PostScript Language Reference, third edn, Addison-
Wesley.

Barron, D. W. (1989), ‘Why use SGML?’, Electronic Publishing - Origination,
Dissemination, and Design 2(1), 3–24.

Bienz, T. & Cohn, R. (1993), Portable Document Format Reference Manual,
Addison-Wesley.

Bos, B., Lie, H. W., Lilley, C. & Jacobs, I. (1998), ‘CSS layer 2’.
URL: http: // www. w3. org/ TR/ 1998/ REC-CSS2-19980512 [accessed 4
October, 2003]

Bray, T., Paoli, J., Sperberg-McQueen, C. M. & Maler, E. (2000), ‘Extensible
markup language (XML) 1.0’.
URL: http: // www. w3. org/ TR/ 2000/ REC-xml-20001006. pdf [ac-
cessed 4 October, 2003]

CTSS, the Compatible Time-Sharing System (n.d.). From Wikipedia, the free en-
cyclopedia.
URL: http: // en. wikipedia. org/ wiki/ CTSS [accessed 20 October,
2003]

Furuta, R. K. (1992), ‘Important papers in the history of document preparation
systems: basic sources’, Electronic Publishing – Origination, Dissemination,
and Design 5(1), 19–44.
URL: citeseer. nj. nec. com/ furuta92important. html [accessed 19
October, 2003]

Jacobsen, D. (1996), ‘The BibTEX format’.
URL: http: // www. ecst. csuchico. edu/ ~jacobsd/ bib/ formats/

bibtex. html [accessed 19 October, 2003]

Kingston, J. H. (n.d.), ‘The future of document formatting’.

Knuth, D. E. (1984), The TEXbook, Addison-Wesley.

Lamport, L. (1986), LATEX: A Document Preparation System, Addison-Wesley.

Minimal XML 1.0 (2000).
URL: http: // www. docuverse. com/ smldev/ minxmlspec. html [ac-
cessed 8 October, 2003]

Myers, B. A. (1991), Text formatting by demonstration, in ‘Proceedings of the
SIGCHI conference on Human factors in computing systems’, ACM Press,
pp. 251–256.

7

Patashnik, O. (1988), BibTEXing. Documentation for general BibTEX users, ver-
sion 0.99b.

Pemberton, S. e. a. (2001), ‘XHTML 1.1 - module-based XHTML’.
URL: http: // www. w3. org/ TR/ xhtml11/ xhtml11. pdf [accessed 4 Oc-
tober, 2003]

Saltzer, J. H. (1964), TYPSET and RUNOFF, Memorandum editor and type-out
commands.
URL: http: // web. mit. edu/ Saltzer/ www/ publications/ AH. 9. 01.

html [accessed 20 October, 2003]

Saltzer, J. H. (1966), Manusrcipt typing and editing.
URL: http: // web. mit. edu/ Saltzer/ www/ publications/ AH. 9. 01.

html [accessed 20 October, 2003]

Tobin, G. (1994), Metafont for beginners, third draft.
URL: http: // www. ntg. nl/ doc/ tobin/ mf4begin. pdf [accessed 20 Oc-
tober, 2003]

van Fleck, T. (1995), ‘The IBM 7094 and CTSS’. updated 2003.
URL: http: // www. multicians. org/ thvv/ 7094. html [accessed 20 Oc-
tober, 2003]

Walsh, N. & Muellner, L. (2002), DocBook: The Definitive Guide, 2 edn, O’Reilly
& Associates, Inc.

8

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aims and Objectives
	Report Overview
	What is a Document?
	What is Document Formatting?

	Historical Developments in Document Formatting
	Automation of Writing
	*roff Family of Typesetters
	RUNOFF
	UNIX derivatives
	Generic Coding with Troff

	Generalized Markup
	Generalized Markup Language
	Standard Generalized Markup Language
	Extensible Markup Language
	Document Style Semantics and Specification Language (DSSSL)

	The Bravo Interactive Editor
	The Scribe System
	The TeX family
	TeX
	LaTeX

	Adobe Page Description Languages
	PostScript
	Portable Document Format

	The Lout System
	Classification of DF Systems

	A Document Formatting System for the Web
	Problems with documents on the Web
	Consistency
	Multiple Output Formats
	Conforming to Standards
	Frequent Updates
	Web Artifacts
	Suitability of Existing Systems
	Summarized Requirements

	The Biloba DF System
	Overview
	Parser
	Output Writer
	Figure Modules
	Cache
	The Structured Text Format

	Discussion
	Review in Context of Related Work
	NOTECH
	Zope STX

	Evaluation
	Strengths of Biloba
	Weaknesses of Biloba

	Conclusion
	Extending Biloba
	Broader Perspective

	Bibliography
	Structured Analysis Diagrams
	Commented Source Code
	Parser Core Files
	Output Writer
	Figure Modules
	Style Sheets
	Test Harness

	Biloba STX -- User's Guide
	Biloba STX -- Expert's Guide
	Biloba STX -- Parser Rules
	Project Supporting Tasks
	Regression Tests
	Estimation And Time Management

	Project Overview Plans
	Project Proposal
	Progress Reports
	Interim Report

